93 (number)
93 (ninety-three) is the natural number following 92 and preceding 94.
  | ||||
|---|---|---|---|---|
  [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]  | ||||
| Cardinal | ninety-three | |||
| Ordinal | 93rd (ninety-third)  | |||
| Factorization | 3 × 31 | |||
| Divisors | 1, 3, 31, 93 | |||
| Greek numeral | ϞΓ´ | |||
| Roman numeral | XCIII | |||
| Binary | 10111012 | |||
| Ternary | 101103 | |||
| Octal | 1358 | |||
| Duodecimal | 7912 | |||
| Hexadecimal | 5D16 | |||
In mathematics
    
93 is:
- the twenty-eighth distinct semiprime[1] and the ninth of the form (3.q).[2]
 - the first number in the third triplet of consecutive semiprimes, 93, 94, and 95.[3]
 - a Blum integer, since its two prime factors, 3 and 31 are both Gaussian primes.[4]
 - a repdigit in base 5 (3335),[5] and 30 (3330).
 - palindromic in bases 2, 5, and 30.
 - a lucky number.[6]
 - a cake number.[7]
 - an idoneal number.[8]
 
There are 93 different cyclic Gilbreath permutations on 11 elements,[9] and therefore there are 93 different real periodic points of order 11 on the Mandelbrot set.[10]
In other fields
    
Ninety-three is:
- The atomic number of neptunium, an actinide.
 - The code for international direct dial phone calls to Afghanistan.
 - One of two ISBN Group Identifiers for books published in India.
 - The number of the French department Seine-Saint-Denis, and as such used by many French gangsta rappers and those emulating their speech.[11][12]
 
In classical Persian finger counting, the number 93 is represented by a closed fist. Because of this, classical Arab and Persian poets around 1 CE referred to someone's lack of generosity by saying that the person's hand made "ninety-three".[13]
See also
    
- AD 93, a year in the Julian calendar
 - List of highways numbered 93
 - Ninety-Three (Quatrevingt-treize), a novel concerning the French Revolution by Victor Hugo
 - Babia 93, an album from a Pakistani pop singer Sajjad Ali
 - London's 93 Feet East music venue
 - Los Angeles 93 KHJ radio
 - United Airlines Flight 93, one of the airplanes hijacked on September 11, 2001.
 - 93 'til Infinity, the debut album by Oakland hip hop group Souls of Mischief.
 
References
    
- Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A001748". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A056809". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A016105". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A048330". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000959". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000125". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000926". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Sloane, N. J. A. (ed.). "Sequence A000048". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
 - Diaconis, Persi; Graham, Ron (2012), "Chapter 5: From the Gilbreath Principle to the Mandelbrot Set", Magical Mathematics: the mathematical ideas that animate great magic tricks, Princeton University Press, pp. 61–83.
 - Durand, Alain-Philippe (2002), Black, Blanc, Beur: Rap Music and Hip-Hop Culture in the Francophone World, Scarecrow Press, p. 55, ISBN 9780810844315.
 - Meltzer, Marisa; Shepherd, Julianne (March 2006), "Spitting Fire", Spin: 76–81.
 - Bloom, Jonathan M. (Spring 2002), "Hand sums: The ancient art of counting on your fingers", Boston College Magazine.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.