145 (number)
145 (one hundred [and] forty-five) is the natural number following 144 and preceding 146.
  | ||||
|---|---|---|---|---|
  [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]  | ||||
| Cardinal | one hundred forty-five | |||
| Ordinal | 145th (one hundred forty-fifth)  | |||
| Factorization | 5 × 29 | |||
| Divisors | 1, 5, 29, 145 | |||
| Greek numeral | ΡΜΕ´ | |||
| Roman numeral | CXLV | |||
| Binary | 100100012 | |||
| Ternary | 121013 | |||
| Octal | 2218 | |||
| Duodecimal | 10112 | |||
| Hexadecimal | 9116 | |||
In mathematics
    
- Although composite, 145 is a Fermat pseudoprime to sixteen bases with b < 145. In four of those bases, it is a strong pseudoprime: 1, 12, 17, and 144.
 - Given 145, the Mertens function returns 0.[1]
 - 145 is a pentagonal number[2] and a centered square number.[3]
 - . 145 is the fourth number that is the sum of two different pairs of squares. Also, 145 is the result of 34 + 43, making it a Leyland number.
 - , making it a factorion.[4] The only other numbers that have the property that they are the sum of the factorials of their digits are 1, 2 and 40585.[4]
 
In the military
    
- USS Armada (AM-145) was a United States Navy Admirable-class minesweeper during World War II
 - USS Colbert (APA-145) was a United States Navy Haskell-class attack transport during World War II
 - USS General Harry Taylor (AP-145) was a United States Navy General G. O. Squier-class transport during World War II
 - USS Greer (DD-145) was a United States Navy Wickes-class destroyer during World War II
 - USS Huse (DE-145) was a United States Navy Edsall-class destroyer escort during World War II
 - USS Roanoke (CL-145) was a United States Navy Worcester-class cruiser following World War II
 
In sports
    
- The Grand Union Canal Race is a 145-mile ultramarathon from Birmingham to London along the Grand Union Canal
 
In transportation
    
- Eurocopter EC 145 is a twin-engine light utility helicopter
 - The Delahaye 145 Sports Car from 1938[5]
 - The Alfa Romeo 145 car produced between 1994 and 2001
 - Volvo 145 Express station wagon
 - ERJ 145 regional jets produced by Embraer
 - Golden Gate Transit Bus Route 145[6]
 - London Bus Route 145[7]
 
In other fields
    
145 is also:
- The year AD 145 or 145 BC
 - 145 AH is a year in the Islamic calendar that corresponds to 762 – 763 CE
 - 145 Adeona is a large main belt asteroid
 - Psalm 145
 - Sonnet 145
 - Apple Computer laptops, such as the PowerBook 145 and PowerBook 145B
 - Puff Daddy song “Picture it” includes the lyrics “in something foreign soarin’ 145”
 - Tsuu T'ina Nation 145 Indian reserve in Alberta, Canada
 - 145 mg medicine tablets, as with Tricor
 - "One Four Five" is a song by The Cat Empire
 
See also
    
    
References
    
- Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 140
 
- "Sloane's A028442 : Numbers n such that Mertens' function is zero". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
 - "Sloane's A000326 : Pentagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
 - "Sloane's A001844 : Centered square numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
 - "Sloane's A014080 : Factorions". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-28.
 -  "Archived copy". www.tertrerouge-racingcars.com. Archived from the original on 16 September 2008. Retrieved 14 January 2022.
{{cite web}}: CS1 maint: archived copy as title (link) - "Ferry Schedules & Maps - Ferry | Golden Gate".
 - "Route 145". London Bus Routes.
 
External links
    
| Wikimedia Commons has media related to 145 (number). | 
- The Natural Number 145
 - Parker, Matt. "145 and the Melancoil". Numberphile. Brady Haran. Archived from the original on 2013-05-14. Retrieved 2013-04-06.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.