67 (number)
67 (sixty-seven) is the natural number following 66 and preceding 68. It is an odd number.
  | ||||
|---|---|---|---|---|
  [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]  | ||||
| Cardinal | sixty-seven | |||
| Ordinal | 67th (sixty-seventh)  | |||
| Factorization | prime | |||
| Prime | 19th | |||
| Divisors | 1, 67 | |||
| Greek numeral | ΞΖ´ | |||
| Roman numeral | LXVII | |||
| Binary | 10000112 | |||
| Ternary | 21113 | |||
| Octal | 1038 | |||
| Duodecimal | 5712 | |||
| Hexadecimal | 4316 | |||
In mathematics
    
67 is:
- the 19th prime number (the next is 71).
 - a Chen prime.[1]
 - an irregular prime.[2]
 - a lucky prime.[3]
 - the sum of five consecutive primes (7 + 11 + 13 + 17 + 19).
 - a Heegner number.[4]
 - a Pillai prime since 18! + 1 is divisible by 67, but 67 is not one more than a multiple of 18.[5]
 - palindromic in the consecutive bases 5 (2325) and 6 (1516).
 
In science
    
- The atomic number of holmium, a lanthanide.
 
Astronomy
    
- Messier object M67, a magnitude 7.5 open cluster in the constellation Cancer.
 - The New General Catalogue object NGC 67, an elliptical galaxy in the constellation Andromeda.
 
In music
    
- "Car 67", a song by the band Driver 67
 - Chicago's song "Questions 67 and 68"
 - Elton John's song "Old '67" on The Captain & The Kid CD, (2006)
 - British rap group called 67
 - Rapper Drake released the song named "Star67" off his album If You're Reading This It's Too Late
 
In other fields
    
Sixty-seven is:
- The registry of the U.S. Navy's aircraft carrier USS John F. Kennedy (CV-67), named after U.S. President John F. Kennedy.
 - The number of the French department Bas-Rhin.
 - The number of counties in Alabama, Florida, and Pennsylvania.
 - The province/traffic code of Zonguldak Province in Turkey
 - In the US, *67 is a common prefix-code for blocking caller ID info on the subsequent call.
 
In sports
    
- Buddy Arrington's best-known NASCAR car number.
 - The Ottawa 67's, founded in 1967.
 - The number of throws in judo.
 - Pekka Koskela skated the 1000 metres in 1:07:00 (67 seconds) on 10 November 2007, a world record at the time.
 - The number of the laps of the German Grand Prix since 2002 if the race was held at Hockenheimring.
 
External links
    
| Wikimedia Commons has media related to 67 (number). | 
References
    
- "Sloane's A109611: Chen primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-01-08.
 - "Sloane's A000928 : Irregular primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
 - "Sloane's A031157 : Numbers that are both lucky and prime". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
 - "Sloane's A003173 : Heegner numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
 - "Sloane's A063980 : Pillai primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-29.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.