50 (number)
50 (fifty) is the natural number following 49 and preceding 51.
  | ||||
|---|---|---|---|---|
  [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]  | ||||
| Cardinal | fifty | |||
| Ordinal | 50th (fiftieth)  | |||
| Numeral system | quinquagesimal | |||
| Factorization | 2 × 52 | |||
| Divisors | 1, 2, 5, 10, 25, 50 | |||
| Greek numeral | Ν´ | |||
| Roman numeral | L | |||
| Unicode symbol(s) | ↆ | |||
| Binary | 1100102 | |||
| Ternary | 12123 | |||
| Octal | 628 | |||
| Duodecimal | 4212 | |||
| Hexadecimal | 3216 | |||
In mathematics
    
Fifty is the smallest number that is the sum of two non-zero square numbers in two distinct ways: 50 = 12 + 72 = 52 + 52.[1] It is also the sum of three squares, 50 = 32 + 42 + 52, and the sum of four squares, 50 = 62 + 32 + 22 + 12. It is a Harshad number.[2]
50 is a Stirling number of the first kind: , and also a Narayana number:
There is no solution to the equation φ(x) = 50, making 50 a nontotient.[3] Nor is there a solution to the equation x − φ(x) = 50, making 50 a noncototient.[4]
| Look up fifty in Wiktionary, the free dictionary. | 
In science
    
- The atomic number of tin
 - The fifth magic number in nuclear physics
 
In religion
    
- In Kabbalah, there are 50 Gates of Wisdom (or Understanding) and 50 Gates of Impurity
 - The traditional number of years in a jubilee period.[5]
 - The Christian Feast of Pentecost takes place on the 50th day of the Easter Season
 - The Jewish Pentecost takes place 50 days after the Passover feast (the holiday of Shavuoth).
 
In sports
    
- In cricket one day internationals, each side may bat for 50 overs.
 
In other fields
    
Fifty is:
- There are 50 states in the United States of America.
 - The TV show Hawaii Five-O and its reimagined version, Hawaii Five-0, are so called because Hawaii is the last (50th) of the states to officially become a state.
 - 5-O (Five-Oh) - Slang for police officers and/or a warning that police are approaching. Derived from the television show Hawaii Five-O[6]
 - A calibre of ammunition (0.50 inches: see .50 BMG)
 - In millimetres, the focal length of the normal lens in 35 mm photography
 - The percentage (50%) equivalent to one half, so that the phrase "fifty-fifty" commonly expresses something divided equally in two; in business this is often denoted as being the ultimate in equal partnership
 - In years of marriage, the gold or "golden" wedding anniversary
 - The speed limit, in kilometres per hour, of Australian and Canadian roads with unspecified limits.
 
See also
    
    
References
    
- de Koninck, J.M. (2009). Those fascinating numbers. AMS Bookstore. p. 18. ISBN 0-8218-4807-0.
 - "Sloane's A005349 : Niven (or Harshad) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
 - "Sloane's A005277 : Nonients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
 - "Sloane's A005278 : Noncotients". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
 - Leviticus 25:10
 - Karen Rhodes (1 February 1997). Booking Hawaii Five-O: An Episode Guide and Critical History of the 1968–1980 Television Detective Series. McFarland. p. 265. ISBN 978-0-7864-8666-3.
 
    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.