Solar eclipse of August 2, 2027

A total solar eclipse will occur over much of the central Eastern Hemisphere on Monday, August 2, 2027. It will commence over the eastern Atlantic Ocean and travel past the Strait of Gibraltar between Spain and Morocco. Totality will be visible in southern Spain as well as parts of North Africa and the Middle East, as well as the northern tip of the Horn of Africa. A partial eclipse visible in much of the Eastern Hemisphere. Major cities under the path will include Luxor in central Egypt, Jeddah and Mecca southern Saudi Arabia, and Sana'a in southern Yemen. It will be the first of three total solar eclipses that are observable in Tunisia in the 21st century, passing over the central part of the country.[1]

Solar eclipse of August 2, 2027
Map
Type of eclipse
NatureTotal
Gamma0.1421
Magnitude1.079
Maximum eclipse
Duration383 sec (6 m 23 s)
Coordinates25.5°N 33.2°E / 25.5; 33.2
Max. width of band258 km (160 mi)
Times (UTC)
Greatest eclipse10:07:50
References
Saros136 (38 of 71)
Catalog # (SE5000)9568

The maximum duration of totality will be observed in Egypt, approximately 37 miles (60 km) southeast of Luxor, and will last 6 minutes and 22 seconds.[2]

Images


Animated path

Eclipses in 2027

Solar eclipses 2026–2029

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

Solar eclipse series sets from 2026–2029
Ascending node   Descending node
1212026 February 17

Annular
1262026 August 12

Total
1312027 February 6

Annular
1362027 August 2

Total
1412028 January 26

Annular
1462028 July 22

Total
1512029 January 14

Partial
1562029 July 11

Partial
Partial solar eclipses on June 12, 2029, and December 5, 2029, occur in the next lunar year eclipse set.

Saros 136

Solar Saros 136, repeating every 18 years, 11 days, contains 71 events. The series started with partial solar eclipse on June 14, 1360, and reached a first annular eclipse on September 8, 1504. It was a hybrid event from November 22, 1612, through January 17, 1703, and total eclipses from January 27, 1721, through May 13, 2496. The series ends at member 71 as a partial eclipse on July 30, 2622, with the entire series lasting 1262 years. The longest eclipse occurred on June 20, 1955, with a maximum duration of totality at 7 minutes, 7.74 seconds. All eclipses in this series occurs at the Moon's descending node.[4]

Series members 29–43 occur between 1865 and 2117
29 30 31

Apr 25, 1865

May 6, 1883

May 18, 1901
32 33 34

May 29, 1919

Jun 8, 1937

Jun 20, 1955
35 36 37

Jun 30, 1973

Jul 11, 1991

Jul 22, 2009
38 39 40

Aug 2, 2027

Aug 12, 2045

Aug 24, 2063
41 42 43

Sep 3, 2081

Sep 14, 2099

Sep 26, 2117

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.[5]

Octon series with 21 events between May 21, 1993 and August 2, 2065
May 20–21 March 8–9 December 25–26 October 13–14 August 1–2
98 100 102 104 106
May 21, 1955 March 9, 1959 December 26, 1962 October 14, 1966 August 2, 1970
108 110 112 114 116
May 21, 1974 March 9, 1978 December 26, 1981 October 14, 1985 August 1, 1989
118 120 122 124 126

May 21, 1993

March 9, 1997

December 25, 2000

October 14, 2004

August 1, 2008
128 130 132 134 136

May 20, 2012

March 9, 2016

December 26, 2019

October 14, 2023

August 2, 2027
138 140 142 144 146

May 21, 2031

March 9, 2035

December 26, 2038

October 14, 2042

August 2, 2046
148 150 152 154 156

May 20, 2050

March 9, 2054

December 26, 2057

October 13, 2061

August 2, 2065
158 160 162 164 166

May 20, 2069
March 8, 2073 December 26, 2076 October 13, 2080 August 1, 2084

References

  1. "Map of Solar Eclipse of August 2, 2027" (Map). "Solar Eclipse Maps". NASA. Retrieved October 21, 2017.
  2. "Longest Duration of Total Solar Eclipse of 2027 Aug 02". NASA Goddard Space Flight Center. NASA. Retrieved 7 September 2017.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. SEsaros136 at NASA.gov
  5. Note S1: Eclipses & Predictions in Freeth, Tony (2014). "Eclipse Prediction on the Ancient Greek Astronomical Calculating Machine Known as the Antikythera Mechanism". PLOS ONE. 9 (7): e103275. Bibcode:2014PLoSO...9j3275F. doi:10.1371/journal.pone.0103275. PMC 4116162. PMID 25075747.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.