List of fusion experiments

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

Target chamber of the Shiva laser, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981
Plasma chamber of TFTR, used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak

[1]

Device nameStatusConstructionOperationLocationOrganisationMajor/minor radiusB-fieldPlasma currentPurposeImage
T-1 (Tokamak-1)Shut down ?1957–1959 MoscowKurchatov Institute0.625 m/0.13 m1 T0.04 MAFirst tokamak
T-3 (Tokamak-3)Shut down ?1962–? MoscowKurchatov Institute1 m/0.12 m2.5 T0.06 MA
ST (Symmetric Tokamak)Shut downModel C1970–1974 PrincetonPrinceton Plasma Physics Laboratory1.09 m/0.13 m5.0 T0.13 MAFirst American tokamak, converted from Model C stellarator
ORMAK (Oak Ridge tokaMAK)Shut down1971–1976 Oak RidgeOak Ridge National Laboratory0.8 m/0.23 m2.5 T0.34 MAFirst to achieve 20 MK plasma temperature
ATC (Adiabatic Toroidal Compressor)Shut down1971–19721972–1976 PrincetonPrinceton Plasma Physics Laboratory0.88 m/0.11 m2 T0.05 MADemonstrate compressional plasma heating
Pulsator[2]Shut down1970–19731973–1979 GarchingMax Planck Institute for Plasma Physics0.7 m/0.12 m2.7 T0.125 MADiscovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses)Shut down1973–1984 Fontenay-aux-RosesCEA1 m/0.2 m6 T0.49 MA
T-10 (Tokamak-10)Operational1975- MoscowKurchatov Institute1.50 m/0.37 m4 T0.8 MALargest tokamak of its time
PLT (Princeton Large Torus)Shut down1975–1986 PrincetonPrinceton Plasma Physics Laboratory1.32 m/0.4 m4 T0.7 MAFirst to achieve 1 MA plasma current
Microtor[3]Shut down ?1976–1983? Los AngelesUCLA0.3 m/0.1 m2.5 T0.12 MAPlasma impurity control and diagnostic development
Macrotor[3]Shut down ?1970s–80s Los AngelesUCLA0.9 m/0.4 m0.4 T0.1 MAUnderstanding plasma rotation driven by radial current
ISX-BShut down ?1978–? Oak RidgeOak Ridge National Laboratory0.93 m/0.27 m1.8 T0.2 MASuperconducting coils, attempt high-beta operation
T-7 (Tokamak-7)Recycled →HT-7[4] ?1979–1985 MoscowKurchatov Institute1.2 m/0.31 m3 T0.3 MAFirst tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment)[5]Recycled →HL-2A1973–19801980–1990 GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.4 m2.8 T0.5 MADiscovery of the H-mode in 1982
TEXTOR (Tokamak Experiment for Technology Oriented Research)[6][7]Shut down1976–19801981–2013 JülichForschungszentrum Jülich1.75 m/0.47 m2.8 T0.8 MAStudy plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[8]Shut down1980–19821982–1997 PrincetonPrinceton Plasma Physics Laboratory2.4 m/0.8 m6 T3 MAAttempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MK
JET (Joint European Torus)[9]Operational1978–19831983- CulhamCulham Centre for Fusion Energy2.96 m/0.96 m4 T7 MARecord for fusion output power 16.1 MW
Novillo[10][11]Shut downNOVA-II1983–2004 Mexico CityInstituto Nacional de Investigaciones Nucleares0.23 m/0.06 m1 T0.01 MAStudy plasma-wall interactions
JT-60 (Japan Torus-60)[12]Recycled →JT-60SA1985–2010 NakaJapan Atomic Energy Research Institute3.4 m/1.0 m4 T3 MAHigh-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak)Shut down ?1986–199? Los AngelesUCLA1.5 m/0.4 m0.2 T0.05 MAH-mode studies
DIII-D[13]Operational1986[14]1986- San DiegoGeneral Atomics1.67 m/0.67 m2.2 T3 MATokamak Optimization
STOR-M (Saskatchewan Torus-Modified)[15]Operational1987- SaskatoonPlasma Physics Laboratory (Saskatchewan)0.46 m/0.125 m1 T0.06 MAStudy plasma heating and anomalous transport
T-15Recycled →T-15MD1983–19881988–1995 MoscowKurchatov Institute2.43 m/0.7 m3.6 T1 MAFirst superconducting tokamak
Tore Supra[16]Recycled →WEST1988–2011 CadaracheDépartement de Recherches sur la Fusion Contrôlée2.25 m/0.7 m4.5 T2 MALarge superconducting tokamak with active cooling
ADITYA (tokamak)Operational1989- GandhinagarInstitute for Plasma Research0.75 m/0.25 m1.2 T0.25 MA
COMPASS (COMPact ASSembly)[17][18]Operational1980-1989- PragueInstitute of Plasma Physics AS CR0.56 m/0.23 m2.1 T0.32 MA
FTU (Frascati Tokamak Upgrade)Operational1990- FrascatiENEA0.935 m/0.35 m8 T1.6 MA
START (Small Tight Aspect Ratio Tokamak)[19]Recycled →Proto-Sphera1990–1998 CulhamCulham Centre for Fusion Energy0.3 m/?0.5 T0.31 MAFirst full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment)Operational1991- GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.5 m2.6 T1.4 MA
Alcator C-Mod (Alto Campo Toro)[20]Operational (funded by Fusion Startups)1986-1991–2016 CambridgeMassachusetts Institute of Technology0.68 m/0.22 m8 T2 MARecord plasma pressure 2.05 bar
ISTTOK (Instituto Superior Técnico TOKamak)[21]Operational1992- LisbonInstituto de Plasmas e Fusão Nuclear0.46 m/0.085 m2.8 T0.01 MA
TCV (Tokamak à Configuration Variable)[22]Operational1992- LausanneÉcole Polytechnique Fédérale de Lausanne0.88 m/0.25 m1.43 T1.2 MAConfinement studies
HBT-EP (High Beta Tokamak-Extended Pulse)Operational1993- New York CityColumbia University Plasma Physics Laboratory0.92 m/0.15 m0.35 T0.03 MAHigh-Beta tokamak
HT-7 (Hefei Tokamak-7)Shut down1991–19941995–2013 HefeiHefei Institutes of Physical Science1.22 m/0.27 m2 T0.2 MAChina's first superconducting tokamak
Pegasus Toroidal Experiment[23]Operational ?1996- MadisonUniversity of Wisconsin–Madison0.45 m/0.4 m0.18 T0.3 MAExtremely low aspect ratio
NSTX (National Spherical Torus Experiment)[24]Operational1999- Plainsboro TownshipPrinceton Plasma Physics Laboratory0.85 m/0.68 m0.3 T2 MAStudy the spherical tokamak concept
Globus-M (UNU Globus-M)[25]Operational1999- Saint PetersburgIoffe Institute0.36 m/0.24 m0.4 T0.3 MAStudy the spherical tokamak concept
ET (Electric Tokamak)Recycled →ETPD19981999–2006 Los AngelesUCLA5 m/1 m0.25 T0.045 MALargest tokamak of its time
CDX-U (Current Drive Experiment-Upgrade)Recycled →LTX2000–2005 PrincetonPrinceton Plasma Physics Laboratory0.3 m/?0.23 T0.03 MAStudy Lithium in plasma walls
MAST (Mega-Ampere Spherical Tokamak)[26]Recycled →MAST-Upgrade1997–19992000–2013 CulhamCulham Centre for Fusion Energy0.85 m/0.65 m0.55 T1.35 MAInvestigate spherical tokamak for fusion
HL-2A (Huan-Liuqi-2A)Operational2000–20022002–2018 ChengduSouthwestern Institute of Physics1.65 m/0.4 m2.7 T0.43 MAH-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak)[27]Operational2001-2005- GandhinagarInstitute for Plasma Research1.1 m/0.2 m3 T0.22 MAProduce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[28]Operational2000–20052006- HefeiHefei Institutes of Physical Science1.85 m/0.43 m3.5 T0.5 MASuperheated plasma for over 101 s at 120 M°C and 20 s at 160 M°C[29]
J-TEXT (Joint TEXT)OperationalTEXT (Texas EXperimental Tokamak)2007- WuhanHuazhong University of Science and Technology1.05 m/0.26 m2.0 T0.2 MADevelop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research)[30]Operational1998–20072008- DaejeonNational Fusion Research Institute1.8 m/0.5 m3.5 T2 MATokamak with fully superconducting magnets, 20 s-long operation at 100 MK[31]
LTX (Lithium Tokamak Experiment)Operational2005–20082008- PrincetonPrinceton Plasma Physics Laboratory0.4 m/?0.4 T0.4 MAStudy Lithium in plasma walls
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak)[32]Operational2008- KasugaKyushu University0.68 m/0.4 m0.25 T0.02 MAStudy steady state operation of a Spherical Tokamak
Kazakhstan Tokamak for Material testing (KTM)Operational2000–20102010- KurchatovNational Nuclear Center of the Republic of Kazakhstan0.86 m/0.43 m1 T0.75 MATesting of wall and divertor
ST25-HTS[33]Operational2012–20152015- CulhamTokamak Energy Ltd0.25 m/0.125 m0.1 T0.02 MASteady state plasma
WEST (Tungsten Environment in Steady-state Tokamak)Operational2013–20162016- CadaracheDépartement de Recherches sur la Fusion Contrôlée2.5 m/0.5 m3.7 T1 MASuperconducting tokamak with active cooling
ST40[34]Operational2017–20182018- DidcotTokamak Energy Ltd0.4 m/0.3 m3 T2 MAFirst high field spherical tokamak
MAST-U (Mega-Ampere Spherical Tokamak Upgrade)[35]Operational2013–20192020- CulhamCulham Centre for Fusion Energy0.85 m/0.65 m0.92 T2 MATest new exhaust concepts for a spherical tokamak
HL-2M (Huan-Liuqi-2M)[36]Operational2018–20192020- LeshanSouthwestern Institute of Physics1.78 m/0.65 m2.2 T1.2 MAElongated plasma with 200 MK
JT-60SA (Japan Torus-60 super, advanced)[37]Operational2013–20202021– NakaJapan Atomic Energy Research Institute2.96 m/1.18 m2.25 T5.5 MAOptimise plasma configurations for ITER and DEMO with full non-inductive steady-state operation
T-15MDOperational2010–20202021- MoscowKurchatov Institute1.48 m/0.67 m2 T2 MAHybrid fusion/fission reactor
ITER[38]Under construction2013–2025?2025? CadaracheITER Council6.2 m/2.0 m5.3 T15 MA ?Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion power
DTT (Divertor Tokamak Test facility)[39][40]Planned2022–2025?2025? FrascatiENEA2.14 m/0.70 m6 T ?5.5 MA ?Superconducting tokamak to study power exhaust
SPARC[41][42]Planned2021–?2025? DevensCommonwealth Fusion Systems and MIT Plasma Science and Fusion Center1.85 m/0.57 m12.2 T8.7 MACompact, high-field tokamak with ReBCO coils and 100 MW planned fusion power
IGNITOR[43]Planned[44] ?>2024 TroitzkENEA1.32 m/0.47 m13 T11 MA ?Compact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
SST-2 (Steady State Tokamak-2)[45]Planned2027? GujaratInstitute for Plasma Research4.42 m/1.47 m5.42 T11.2 MAFull-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor)[46]Planned2020?2030?Institute of Plasma Physics, Chinese Academy of Sciences5.7 m/1.6 m ?5 T ?10 MA ?Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
ST-F1[47]Planned2027? DidcotTokamak Energy Ltd ?4 T5 MASpherical tokamak with Q=3 and hundreds of MW planned electrical output
STEP (Spherical Tokamak for Energy Production)Planned2032?2040? CulhamCulham Centre for Fusion Energy3 m/2 m ? ? ?Spherical tokamak with hundreds of MW planned electrical output
K-DEMO (Korean fusion demonstration tokamak reactor)[48]Planned2037?National Fusion Research Institute6.8 m/2.1 m7 T12 MA ?Prototype for the development of commercial fusion reactors with around 2200 MW of fusion power
DEMO (DEMOnstration Power Station)Planned2031?2044? ?9 m/3 m ?6 T ?20 MA ?Prototype for a commercial fusion reactor

Stellarator

Device nameStatusConstructionOperationTypeLocationOrganisationMajor/minor radiusB-fieldPurposeImage
Model AShut down1952–19531953–?Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m0.1 TFirst stellarator
Model BShut down1953–19541954–1959Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TDevelopment of plasma diagnostics
Model B-1Shut down ?-1959Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.25 m/0.02 m5 TYielded 1 MK plasma temperatures
Model B-2Shut down1957Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TElectron temperatures up to 10 MK
Model B-3Shut down19571958-Figure-8 PrincetonPrinceton Plasma Physics Laboratory0.4 m/0.02 m4 TLast figure-8 device, confinement studies of ohmically heated plasma
Model B-64Shut down19551955Square PrincetonPrinceton Plasma Physics Laboratory ? m/0.05 m1.8 T
Model B-65Shut down19571957Racetrack PrincetonPrinceton Plasma Physics Laboratory
Model B-66Shut down19581958–?Racetrack PrincetonPrinceton Plasma Physics Laboratory
Wendelstein 1-AShut down1960Racetrack GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=3
Wendelstein 1-BShut down1960Racetrack GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=2
Model CRecycled →ST1957–19621962–1969Racetrack PrincetonPrinceton Plasma Physics Laboratory1.9 m/0.07 m3.5 TFound large plasma losses by Bohm diffusion
L-1Shut down19631963–1971 LebedevLebedev Physical Institute0.6 m/0.05 m1 T
SIRIUSShut down1964–?Racetrack Kharkiv
TOR-1Shut down19671967–1973 LebedevLebedev Physical Institute0.6 m/0.05 m1 T
TOR-2Shut down ?1967–1973 LebedevLebedev Physical Institute0.63 m/0.036 m2.5 T
Uragan-1Shut down ?1967–?Racetrack KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.1 m/0.1 m1 T ?
Wendelstein 2-AShut down1965–19681968–1974Heliotron GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.05 m0.6 TGood plasma confinement “Munich mystery”
Wendelstein 2-BShut down ?-19701971–?Heliotron GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.055 m1.25 TDemonstrated similar performance as tokamaks
L-2Shut down ?1975–? LebedevLebedev Physical Institute1 m/0.11 m2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung)Recycled →HIDRA1972–19751975–2013Classical stellarator GreifswaldMax-Planck-Institut für Plasmaphysik0.72 m/0.15 m1.4 TTest lower hybrid heating
Wendelstein 7-AShut down ?1975–1985Classical stellarator GarchingMax-Planck-Institut für Plasmaphysik2 m/0.1 m3.5 TFirst "pure" stellarator without plasma current
Heliotron-EShut down ?1980–?Heliotron2.2 m/0.2 m1.9 T
Heliotron-DRShut down ?1981–?Heliotron0.9 m/0.07 m0.6 T
Uragan-3 (M)[49]Operational ?1982–?[50]Torsatron KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.0 m/0.12 m1.3 T ?
Auburn Torsatron (AT)Shut down ?1984–1990Torsatron AuburnAuburn University0.58 m/0.14 m0.2 T
Wendelstein 7-ASShut down1982–19881988–2002Modular, advanced stellarator GarchingMax-Planck-Institut für Plasmaphysik2 m/0.13 m2.6 TFirst H-mode in a stellarator in 1992
Advanced Toroidal Facility (ATF)Shut down1984–1988[51]1988–?Torsatron Oak RidgeOak Ridge National Laboratory2.1 m/0.27 m2.0 THigh-beta operation
Compact Helical System (CHS)Shut down ?1989–?Heliotron TokiNational Institute for Fusion Science1 m/0.2 m1.5 T
Compact Auburn Torsatron (CAT)Shut down ?-19901990–2000Torsatron AuburnAuburn University0.53 m/0.11 m0.1 TStudy magnetic flux surfaces
H-1 (Heliac-1)[52]Operational1992-Heliac CanberraResearch School of Physical Sciences and Engineering, Australian National University1.0 m/0.19 m0.5 T
TJ-K (Tokamak de la Junta Kiel)[53]OperationalTJ-IU1994-Torsatron Kiel, StuttgartUniversity of Stuttgart0.60 m/0.10 m0.5 TTeaching
TJ-II (Tokamak de la Junta II)[54]Operational1991-19961997-flexible Heliac MadridNational Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas1.5 m/0.28 m1.2 TStudy plasma in flexible configuration
LHD (Large Helical Device)[55]Operational1990–19981998-Heliotron TokiNational Institute for Fusion Science3.5 m/0.6 m3 TDetermine feasibility of a stellarator fusion reactor
HSX (Helically Symmetric Experiment)Operational1999-Modular, quasi-helically symmetric MadisonUniversity of Wisconsin–Madison1.2 m/0.15 m1 TInvestigate plasma transport
Heliotron J (Heliotron J)[56]Operational2000-Heliotron KyotoInstitute of Advanced Energy1.2 m/0.1 m1.5 TStudy helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT)Operational ?2004-Circular interlocked coils New York CityColumbia University0.3 m/0.1 m0.2 TStudy of non-neutral plasmas
Uragan-2(M)[49]Operational1988–20062006-[57]Heliotron, Torsatron KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.7 m/0.24 m2.4 T ?
Quasi-poloidal stellarator (QPS)[58][59]Cancelled2001–2007-Modular Oak RidgeOak Ridge National Laboratory0.9 m/0.33 m1.0 TStellarator research
NCSX (National Compact Stellarator Experiment)Cancelled2004–2008-Helias PrincetonPrinceton Plasma Physics Laboratory1.4 m/0.32 m1.7 THigh-β stability
Compact Toroidal Hybrid (CTH)Operational ?2007?-Torsatron AuburnAuburn University0.75 m/0.2 m0.7 THybrid stellarator/tokamak
HIDRA (Hybrid Illinois Device for Research and Applications)[60]Operational2013–2014 (WEGA)2014- ? Urbana, ILUniversity of Illinois0.72 m/0.19 m0.5 TStellarator and tokamak in one device
UST_2[61]Operational20132014-modular three period quasi-isodynamic MadridCharles III University of Madrid0.29 m/0.04 m0.089 T3D-printed stellarator
Wendelstein 7-X[62]Operational1996–20152015-Helias GreifswaldMax-Planck-Institut für Plasmaphysik5.5 m/0.53 m3 TSteady-state plasma in fully optimized stellarator
SCR-1 (Stellarator of Costa Rica)Operational2011–20152016-Modular CartagoCosta Rica Institute of Technology0.14 m/0.042 m0.044 T
CFQS (Chinese First Quasi-Axisymmetric Stellarator)[63] Under construction 2017 – Helias Chengdu Southwest Jiaotong University, National Institute for Fusion Science in Japan 1 m/0.25 m 1 T m=2 quasi-axisymmetric stellarator, modular

Magnetic mirror

Toroidal Z-pinch

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

Reversed field pinch (RFP)

Spheromak

Field-reversed configuration (FRC)

Plasma pinch

Levitated dipole

Inertial confinement

Solid state lasers
Gas lasers
  • NIKE laser at the Naval Research Laboratories, Krypton Fluoride gas laser
  • PALS, formerly the "Asterix IV", at the Academy of Sciences of the Czech Republic,[72] 1 kJ max. output iodine laser at 1.315 micrometre fundamental wavelength
Solid-state lasers
Gas lasers
  • "Single Beam System" or simply "67" after the building number it was housed in, a 1 kJ carbon dioxide laser at Los Alamos National Laboratory
  • Gemini laser, 2 beams, 2.5 kJ carbon dioxide laser at LANL
  • Helios laser, 8 beam, ~10 kJ carbon dioxide laser at LANLMedia at Wikimedia Commons
  • Antares laser at LANL. (40 kJ CO2 laser, largest ever built, production of hot electrons in target plasma due to long wavelength of laser resulted in poor laser/plasma energy coupling)
  • Aurora laser 96 beam 1.3 kJ total krypton fluoride (KrF) laser at LANL
  • Sprite laser few joules/pulse laser at the Central Laser Facility, Rutherford Appleton Laboratory

Z-pinch

Inertial electrostatic confinement

Magnetized target fusion

References

  1. "International tokamak research". ITER.
  2. "Pulsator".
  3. Taylor, R. J., Lee, P., & Luhmann Jr, N. C. (1981). ICRF heating, particle transport and fluctuations in tokamaks (PDF) (Report).{{cite report}}: CS1 maint: uses authors parameter (link)
  4. Robert Arnoux (2009-05-18). "From Russia with love".
  5. "ASDEX". www.ipp.mpg.de.
  6. "Forschungszentrum Jülich – Plasmaphysik (IEK-4)". fz-juelich.de (in German).
  7. Progress in Fusion Research – 30 Years of TEXTOR
  8. "Tokamak Fusion Test Reactor". 2011-04-26. Archived from the original on 2011-04-26.
  9. "EFDA-JET, the world's largest nuclear fusion research experiment". 2006-04-30. Archived from the original on 2006-04-30.
  10. ":::. Instituto Nacional de Investigaciones Nucleares | Fusión nuclear ". 2009-11-25. Archived from the original on 2009-11-25.
  11. "All-the-Worlds-Tokamaks". tokamak.info.
  12. Yoshikawa, M. (2006-10-02). "JT-60 Project". Fusion Technology 1978. 2: 1079. Bibcode:1979fute.conf.1079Y. Archived from the original on 2006-10-02.
  13. "diii-d:home [MFE: DIII-D and Theory]". fusion.gat.com. Retrieved 2018-09-04.
  14. "DIII-D National Fusion Facility (DIII-D) | U.S. DOE Office of Science (SC)". science.energy.gov. Retrieved 2018-09-04.
  15. "U of S". 2011-07-06. Archived from the original on 2011-07-06.
  16. "Tore Supra". www-fusion-magnetique.cea.fr. Retrieved 2018-09-04.
  17. . 2014-05-12 https://web.archive.org/web/20140512214251/http://www.ipp.cas.cz/Tokamak/index?m=comp. Archived from the original on 2014-05-12. {{cite web}}: Missing or empty |title= (help)
  18. "COMPASS – General information". 2013-10-25. Archived from the original on 2013-10-25.
  19. . 2006-04-24 https://web.archive.org/web/20060424061102/http://www.fusion.org.uk/culham/start.htm. Archived from the original on 2006-04-24. {{cite web}}: Missing or empty |title= (help)
  20. "MIT Plasma Science & Fusion Center: research>alcator>". 2015-07-09. Archived from the original on 2015-07-09.
  21. "Centro de Fusão Nuclear". cfn.ist.utl.pt. Archived from the original on 2010-03-07. Retrieved 2012-02-13.
  22. "EPFL". crppwww.epfl.ch.
  23. "Pegasus Toroidal Experiment". pegasus.ep.wisc.edu.
  24. "NSTX-U". nstx-u.pppl.gov. Retrieved 2018-09-04.
  25. "Globus-M experiment". globus.rinno.ru/ (in Russian). Retrieved 2021-10-23.
  26. "MAST – the Spherical Tokamak at UKAEA Culham". 2006-04-21. Archived from the original on 2006-04-21.
  27. "The SST-1 Tokamak Page". 2014-06-20. Archived from the original on 2014-06-20.
  28. "EAST (HT-7U Super conducting Tokamak)----Hefei Institutes of Physical Science, The Chinese Academy of Sciences". english.hf.cas.cn.
  29. "Chinese 'Artificial Sun' experimental fusion reactor sets world record for superheated plasma time". The Nation. May 29, 2021.
  30. . 2008-05-30 https://web.archive.org/web/20080530221257/http://www.nfri.re.kr/. Archived from the original on 2008-05-30. {{cite web}}: Missing or empty |title= (help)
  31. "Korean artificial sun sets the new world record of 20-sec-long operation at 100 million degrees". phys.org. Retrieved 2020-12-26.
  32. . 2013-11-10 https://web.archive.org/web/20131110043518/http://www.triam.kyushu-u.ac.jp/QUEST_HP/quest_e.html. Archived from the original on 2013-11-10. {{cite web}}: Missing or empty |title= (help)
  33. "ST25 » Tokamak Energy".
  34. "ST40 » Tokamak Energy".
  35. "Status and Plans on MAST-U". 2016-12-13.
  36. "China completes new tokamak".
  37. "The JT-60SA project". www.jt60sa.org.
  38. "ITER – the way to new energy". ITER.
  39. "The DTT Project".
  40. "The new Divertor Tokamak Test facility" (PDF).
  41. "SPARC at MIT Plasma Science and Fusion Center".
  42. Creely, A. J.; Greenwald, M. J.; Ballinger, S. B.; Brunner, D.; Canik, J.; Doody, J.; Fülöp, T.; Garnier, D. T.; Granetz, R.; Gray, T. K.; Holland, C. (2020). "Overview of the SPARC tokamak". Journal of Plasma Physics. 86 (5). Bibcode:2020JPlPh..86e8602C. doi:10.1017/S0022377820001257. ISSN 0022-3778.
  43. "Ignited plasma in Tokamaks – The IGNITOR project". frascati.enea.it. Archived from the original on 2020-04-19.
  44. "CREMLIN WP2 Informal exchange meeting: The Russian-Italian IGNITOR Tokamak Project: Design and status of implementation". DESY-Konferenzverwaltung (Indico).
  45. Srinivasan, R. (2016). "Design and analysis of SST-2 fusion reactor". Fusion Engineering and Design. 112: 240–243. doi:10.1016/j.fusengdes.2015.12.044. ISSN 0920-3796.
  46. Gao, X. (2013-12-17). "Update on CFETR Concept Design" (PDF). www-naweb.iaea.org.
  47. https://www.madeherenow.com/news/post/2019/10/22/energy-innovator-reaches-for-the-stars. {{cite web}}: Missing or empty |title= (help)
  48. Kim, K.; Im, K.; Kim, H. C.; Oh, S.; Park, J. S.; Kwon, S.; Lee, Y. S.; Yeom, J. H.; Lee, C. (2015). "Design concept of K-DEMO for near-term implementation". Nuclear Fusion. 55 (5): 053027. Bibcode:2015NucFu..55e3027K. doi:10.1088/0029-5515/55/5/053027. ISSN 0029-5515.
  49. "History | ННЦ ХФТИ". kipt.kharkov.ua.
  50. "Uragan-3M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  51. "ORNL Review v17n3 1984.pdf | ORNL". www.ornl.gov.
  52. Department, Head of; prl@physics.anu.edu.au. "Plasma Research Laboratory – PRL – ANU". prl.anu.edu.au.
  53. "TJ-K – FusionWiki". fusionwiki.ciemat.es.
  54. CIEMAT. "Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas". ciemat.es (in Spanish).
  55. "Large Helical Device Project". lhd.nifs.ac.jp. Archived from the original on 2010-04-12. Retrieved 2006-04-20.
  56. "Heliotron J Project". iae.kyoto-u.ac.jp/en/joint/heliotron-j.html.
  57. "Uragan-2M | IPP NSC KIPT". ipp.kipt.kharkov.ua.
  58. "QPS Home Page".
  59. http://qps.fed.ornl.gov/pvr/pdf/qpsentire.pdf
  60. "HIDRA – Hybrid Illinois Device for Research and Applications | CPMI – Illinois". cpmi.illinois.edu.
  61. "Vying Fusion Energy - V. Queral". www.fusionvic.org.
  62. "Wendelstein 7-X". ipp.mpg.de/w7x.
  63. KINOSHITA, Shigeyoshi; SHIMIZU, Akihiro; OKAMURA, Shoichi; ISOBE, Mitsutaka; XIONG, Guozhen; LIU, Haifeng; XU, Yuhong; The CQFS Team (2019-06-03). "Engineering Design of the Chinese First Quasi-Axisymmetric Stellarator (CFQS)". Plasma and Fusion Research. 14: 3405097. Bibcode:2019PFR....1405097K. doi:10.1585/pfr.14.3405097. ISSN 1880-6821.
  64. "CONSORZIO RFX – Ricerca Formazione Innovazione". igi.cnr.it. Archived from the original on 2009-09-01. Retrieved 2018-04-16.
  65. Hartog, Peter Den. "MST – UW Plasma Physics". plasma.physics.wisc.edu.
  66. Liu, Wandong; et, al. (2017). "Overview of Keda Torus eXperiment initial results". Nuclear Fusion. 57 (11): 116038. Bibcode:2017NucFu..57k6038L. doi:10.1088/1741-4326/aa7f21. ISSN 0029-5515.
  67. "Report Oct 15, 2021" (PDF). 2021-10-15. Archived (PDF) from the original on 2021-10-25.
  68. "Levitated Dipole Experiment". 2004-08-23. Archived from the original on 2004-08-23.
  69. "Lasers, Photonics, and Fusion Science: Science and Technology on a Mission". llnl.gov.
  70. "CEA – Laser Mégajoule". www-lmj.cea.fr.
  71. "RFNC-VNIIEF – Science – Laser physics". 2005-04-06. Archived from the original on 2005-04-06.
  72. "PALS, Laser". archive.is. 2001-06-27. Archived from the original on 2001-06-27.
  73. "University of Nevada, Reno. Nevada Terawatt Facility". archive.is. 2000-09-19. Archived from the original on 2000-09-19.
  74. "Sandia National Laboratories: National Security Programs". sandia.gov.
  75. "PULSOTRON". pulsotron.org. Archived from the original on 2019-04-01. Retrieved 2020-03-09.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.