Bidiagonal matrix

In mathematics, a bidiagonal matrix is a banded matrix with non-zero entries along the main diagonal and either the diagonal above or the diagonal below. This means there are exactly two non-zero diagonals in the matrix.

When the diagonal above the main diagonal has the non-zero entries the matrix is upper bidiagonal. When the diagonal below the main diagonal has the non-zero entries the matrix is lower bidiagonal.

For example, the following matrix is upper bidiagonal:

and the following matrix is lower bidiagonal:

Usage

One variant of the QR algorithm starts with reducing a general matrix into a bidiagonal one,[1] and the Singular value decomposition uses this method as well.

Bidiagonalization

See also

References

  • Stewart, G. W. (2001) Matrix Algorithms, Volume II: Eigensystems. Society for Industrial and Applied Mathematics. ISBN 0-89871-503-2.
  1. Bochkanov Sergey Anatolyevich. ALGLIB User Guide - General Matrix operations - Singular value decomposition . ALGLIB Project. 2010-12-11. URL:http://www.alglib.net/matrixops/general/svd.php. Accessed: 2010-12-11. (Archived by WebCite at https://www.webcitation.org/5utO4iSnR)


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.