TREM1

Triggering receptor expressed on myeloid cells 1 (TREM-1) is a protein that in humans is encoded by the TREM1 gene.[5][6][7] TREM-1 is a surface receptor that amplifies inflammatory processes in vitro.

TREM1
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesTREM1, CD354, TREM-1, triggering receptor expressed on myeloid cells 1
External IDsOMIM: 605085 MGI: 1930005 HomoloGene: 10243 GeneCards: TREM1
Orthologs
SpeciesHumanMouse
Entrez

54210

58217

Ensembl

ENSG00000124731

ENSMUSG00000042265

UniProt

Q9NP99

Q9JKE2

RefSeq (mRNA)

NM_001242589
NM_001242590
NM_018643

NM_021406
NM_001347399

RefSeq (protein)

NP_001229518
NP_001229519
NP_061113

NP_001334328
NP_067381

Location (UCSC)Chr 6: 41.27 – 41.29 MbChr 17: 48.54 – 48.55 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

Monocyte/macrophage- and neutrophil-mediated inflammatory responses can be stimulated through a variety of receptors, including G protein-linked 7-transmembrane receptors (e.g., FPR1), Fc receptors, CD14, Toll-like receptors (TLRs; e.g., TLR4), and cytokine receptors. TREM-1 amplifies toll-like receptors induced inflammation by further increasing the production of proinflammatory cytokines.[8] The ligand of TREM-1 is unknown, however, bacterial infection, ischemic stroke and challenge with lipopolysaccharide or lipoteichoic acid were observed to increase TREM-1 expression.[9] In granulocyte cells, C/EBPε was also shown to induce TREM-1 expression independently from inflammatory response.[10]

Interpreted from laboratory studies, TREM-1 may have a role in development of atherosclerosis,[11] non-alcoholic fatty liver disease,[12] and ischemic stroke.[13]

Soluble TREM-1

During inflammation, a soluble form of the molecule (sTREM-1) accumulates in the circulation, that is used as a biomarker to indicate inflammation. It is a matter of debate whether sTREM-1 is produced as a splice variant or as the results of proteolytic cleavage, but studies found evidence for both mechanisms.[14][15] sTREM-1 acts as a decoy receptor by competing for the unknown TREM-1 ligand. Therefore it provides a negative feedback loop for TREM-1 activation.[16] sTREM-1 has been demonstrated to provide valuable information about the extent of inflammatory processes and/or outcomes in the context of pneumonia,[17] sepsis,[18] inflammatory bowel disease[19][20] and liver cirrhosis.[21]

Model organisms

Model organisms have been used in the study of TREM1 function. A conditional knockout mouse line called Trem1tm1(KOMP)Vlcg was generated at the Wellcome Trust Sanger Institute.[22] Male and female animals underwent a standardized phenotypic screen[23] to determine the effects of deletion.[24][25][26][27] Additional screens performed: - In-depth immunological phenotyping[28]


References

  1. GRCh38: Ensembl release 89: ENSG00000124731 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000042265 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Gingras MC, Lapillonne H, Margolin JF (March 2002). "TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development". Molecular Immunology. 38 (11): 817–24. doi:10.1016/S0161-5890(02)00004-4. PMID 11922939.
  6. Bouchon A, Dietrich J, Colonna M (May 2000). "Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes". Journal of Immunology. 164 (10): 4991–5. doi:10.4049/jimmunol.164.10.4991. PMID 10799849.
  7. "Entrez Gene: TREM1 triggering receptor expressed on myeloid cells 1".
  8. Arts RJ, Joosten LA, van der Meer JW, Netea MG (February 2013). "TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors". Journal of Leukocyte Biology. 93 (2): 209–15. doi:10.1189/jlb.0312145. PMID 23108097.
  9. Bouchon A, Facchetti F, Weigand MA, Colonna M (April 2001). "TREM-1 amplifies inflammation and is a crucial mediator of septic shock". Nature. 410 (6832): 1103–7. doi:10.1038/35074114. PMID 11323674.
  10. Suh HC, Benoukraf T, Shyamsunder P, Yin T, Cao Q, Said J, et al. (April 2017). "LPS independent activation of the pro-inflammatory receptor Trem1 by C/EBPε in granulocytes". Scientific Reports. 7: 46440. doi:10.1038/srep46440. PMC 5404328. PMID 28440307.
  11. Zysset D, Weber B, Rihs S, Brasseit J, Freigang S, Riether C, et al. (October 2016). "TREM-1 links dyslipidemia to inflammation and lipid deposition in atherosclerosis". Nature Communications. 7 (1): 13151. doi:10.1038/ncomms13151. PMC 5080444. PMID 27762264.
  12. Rao S, Huang J, Shen Z, Xiang C, Zhang M, Lu X (February 2019). "Inhibition of TREM-1 attenuates inflammation and lipid accumulation in diet-induced nonalcoholic fatty liver disease". Journal of Cellular Biochemistry. 120 (7): 11867–11877. doi:10.1002/jcb.28468. PMC 6593463. PMID 30805986.
  13. Liu Q, Johnson EM, Lam RK, et al. (August 2019). "Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity". Nature Immunology. 20 (8): 1023–1034. doi:10.1038/s41590-019-0421-2. PMC 6778967. PMID 31263278.
  14. Baruah S, Keck K, Vrenios M, Pope MR, Pearl M, Doerschug K, Klesney-Tait J (December 2015). "Identification of a Novel Splice Variant Isoform of TREM-1 in Human Neutrophil Granules". Journal of Immunology. 195 (12): 5725–31. doi:10.4049/jimmunol.1402713. PMC 4670805. PMID 26561551.
  15. Gómez-Piña V, Soares-Schanoski A, Rodríguez-Rojas A, Del Fresno C, García F, Vallejo-Cremades MT, et al. (September 2007). "Metalloproteinases shed TREM-1 ectodomain from lipopolysaccharide-stimulated human monocytes". Journal of Immunology. 179 (6): 4065–73. doi:10.4049/jimmunol.179.6.4065. PMID 17785845.
  16. Gibot S, Kolopp-Sarda MN, Béné MC, Bollaert PE, Lozniewski A, Mory F, et al. (December 2004). "A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis". The Journal of Experimental Medicine. 200 (11): 1419–26. doi:10.1084/jem.20040708. PMC 2211948. PMID 15557347.
  17. Tejera A, Santolaria F, Diez ML, Alemán-Valls MR, González-Reimers E, Martínez-Riera A, Milena-Abril A (June 2007). "Prognosis of community acquired pneumonia (CAP): value of triggering receptor expressed on myeloid cells-1 (TREM-1) and other mediators of the inflammatory response". Cytokine. 38 (3): 117–23. doi:10.1016/j.cyto.2007.05.002. PMID 17659879.
  18. Tejera A, Santolaria F, Diez ML, Alemán-Valls MR, González-Reimers E, Martínez-Riera A, Milena-Abril A (June 2007). "Prognosis of community acquired pneumonia (CAP): value of triggering receptor expressed on myeloid cells-1 (TREM-1) and other mediators of the inflammatory response". Cytokine. 38 (3): 117–23. doi:10.1016/j.cyto.2007.05.002. PMID 17659879.
  19. Park JJ, Cheon JH, Kim BY, Kim DH, Kim ES, Kim TI, et al. (July 2009). "Correlation of serum-soluble triggering receptor expressed on myeloid cells-1 with clinical disease activity in inflammatory bowel disease". Digestive Diseases and Sciences. 54 (7): 1525–31. doi:10.1007/s10620-008-0514-5. PMID 18975078.
  20. Jung YS, Park JJ, Kim SW, Hong SP, Kim TI, Kim WH, Cheon JH (November 2012). "Correlation between soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) expression and endoscopic activity in inflammatory bowel diseases". Digestive and Liver Disease. 44 (11): 897–903. doi:10.1016/j.dld.2012.05.011. PMID 22721842.
  21. Tornai D, Vitalis Z, Jonas A, Janka T, Foldi I, Tornai T, et al. (March 2021). "Increased sTREM-1 levels identify cirrhotic patients with bacterial infection and predict their 90-day mortality". Clinics and Research in Hepatology and Gastroenterology. 45 (5): 101579. doi:10.1016/j.clinre.2020.11.009. PMID 33773436.
  22. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  23. "International Mouse Phenotyping Consortium".
  24. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. (June 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  25. Dolgin E (June 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  26. Collins FS, Rossant J, Wurst W (January 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  27. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, et al. (July 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  28. "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.