Spherical conic
A spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section (ellipse, parabola, or hyperbola) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of whose great-circle distances to two foci is constant.[1] By taking the antipodal point to one focus, every spherical ellipse is also a spherical hyperbola, and vice versa. As a space curve, a spherical conic is a quartic, though its orthogonal projections in three principal axes are planar conics. Like planar conics, spherical conics also satisfy a “reflection property”: the great-circle arcs from the two foci to any point on the conic have the tangent and normal to the conic at that point as their angle bisectors.

Many theorems about conics in the plane extend to spherical conics. For example, Graves’s theorem and Ivory’s theorem about confocal conics can also be proven on the sphere, see confocal conic sections about the planar versions.
Just as the arc length of an ellipse is given by an incomplete elliptic integral of the second kind, the arc length of a spherical conic is given by an incomplete elliptic integral of the third kind.[2]
An orthogonal coordinate system in Euclidean space based on concentric spheres and quadratic cones is called a conical or sphero-conical coordinate system. When restricted to the surface of a sphere, the remaining coordinates are confocal spherical conics. Sometimes this is called an elliptic coordinate system on the sphere, by analogy to a planar elliptic coordinate system. Such coordinates can be used in the computation of conformal maps from the sphere to the plane.[3]
The solution of the Kepler problem in a space of uniform positive curvature is a spherical conic, with a potential proportional to the cotangent of geodesic distance.[4]
Because it preserves distances to a pair of specified points, the two-point equidistant projection maps the family of confocal conics on the sphere onto two families of confocal ellipses and hyperbolae in the plane.[5]
If a portion of the Earth is modeled as spherical, e.g. using the osculating sphere at a point on an ellipsoid of revolution, the hyperbolae used in hyperbolic navigation (which determines position based on the difference in received signal timing from fixed radio transmitters) are spherical conics.[6]
Notes
- Fuss (1788)
- Gudermann (1835), Booth (1844)
- Guyou (1887), Adams (1925)
- Higgs (1979), Kozlov & Harin (1992), Cariñena, Rañada, & Santander (2005), Arnold, Kozlov, & Neishtadt (2007)
- Cox (1946)
- Razin (1967), Freiesleben (1976)
References
- O. S. Adams (1925). Elliptic functions applied to conformal world maps (No. 297). US Government Printing Office. ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/cgs_specpubs/QB275U35no1121925.pdf
- A. Akopyan & I. Izmestiev (2019). “The Regge symmetry, confocal conics, and the Schläfli formula”. Bulletin of the London Mathematical Society 51(5), 765–775. https://arxiv.org/abs/1903.04929
- A. Albouy (2013). “There is a projective dynamics”. European Mathematical Society Newsletter 89, 37–43. https://www.ems-ph.org/journals/newsletter/pdf/2013-09-89.pdf#page=39
- A. Albouy & L. Zhao (2019). “Lambert's theorem and projective dynamics”. Philosophical Transactions of the Royal Society A 377(2158), 20180417. https://doi.org/10.1098/rsta.2018.0417
- B. Altunkaya, Y. Yayli, H. H. Hacisalihoglu, H. H., & F. Arslan (2014). “One-Parameter Equations of Spherical Conics and Its Applications”. Journal of Mathematics Research 6(4), 77. https://doi.org/10.5539/jmr.v6n4p77
- V. I. Arnold, V. V. Kozlov, & A. I. Neishtadt (2007). Mathematical aspects of classical and celestial mechanics. Springer. https://www.springer.com/gp/book/9783540282464
- J. Booth (1844). “IV. On the rectification and quadrature of the spherical ellipse.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 25(163), 18–38. https://doi.org/10.1080/14786444408644925
- J. Booth (1851). The Theory of Elliptic Integrals: And the Properties of Surfaces of the Second Order, Applied to the Investigation of the Motion of a Body Round a Fixed Point. George Bell. https://archive.org/details/cu31924060289109/
- W. Burnside (1891) “On the differential equation of confocal sphero-conics”, Messenger of Mathematics 20, 60–63. https://archive.org/details/messengermathem02unkngoog/page/n64/mode/2up
- J. F. Cariñena, M. F. Rañada, & M. Santander (2005). “Central potentials on spaces of constant curvature: The Kepler problem on the two-dimensional sphere S2 and the hyperbolic plane H2”. Journal of Mathematical Physics 46(5), 052702. http://doi.org/10.1063/1.1893214
- M. Chasles (1831) Mémoire de géométrie sur les propriétés générales des coniqes sphériques. L’Académie de Bruxelles.
Translated by C. Graves (1841) Two geometrical memoirs on the general properties of cones of the second degree, and on the spherical conics. Grant and Bolton. https://archive.org/details/twogeometricalme00chasrich/page/38/mode/2up - M. Chasles (1860). “Résumé d'une théorie des coniques sphériques homofocales”. Comptes Rendus des séances de l'Académie des Sciences 50, 623–633. http://sites.mathdoc.fr/JMPA/PDF/JMPA_1860_2_5_A34_0.pdf
- J. F. Cox (1946). “The doubly equidistant projection”. Bulletin Géodésique 2(1), 74–76. http://doi.org/10.1007/bf02521618
- T. Davies, (1834). “XII. On the Equations of Loci traced upon the Surface of the Sphere, as expressed by Spherical Co-ordinates”. Transactions of the Royal Society of Edinburgh 12(1), 259–362. https://doi.org/10.1017/S0080456800030611
- H. C. Freiesleben (1976). “Spherical hyperbolae and ellipses”. The Journal of Navigation 29(2), 194–199. https://doi.org/10.1017/S0373463300030186
- N. Fuss (1788), “De proprietatibus quibusdam ellipseos in superficie sphaerica descriptae”, Nova Acta academiae scientiarum imperialis Petropolitanae 3, 90–99. https://archive.org/details/novaactaacademia03impe/page/90/mode/2up
- G. Glaeser, H. Stachel, & B. Odehnal (2016). The Universe of Conics: From the ancient Greeks to 21st century developments. Springer. https://www.springer.com/gp/book/9783662454497
- C. Gudermann (1830), “Über die analytische Sphärik”. Crelle’s Journal 6, 244–254. https://archive.org/details/journalfrdierei18crelgoog/page/n255/mode/2up
- C. Gudermann (1835), “Integralia elliptica tertiae speciei reducendi methodus simplicior, quae simul ad ipsorum applicationem facillimam et computum numericum expeditum perducit. Sectionum conico–sphaericarum qudratura et rectification.” Crelle’s Journal 14. https://archive.org/details/journalfrdierei19crelgoog/page/n178/mode/2up
- E. Guyou (1887) “Nouveau système de projection de la sphère: Généralisation de la projection de Mercator”, Annales Hydrographiques, Ser. 2, Vol. 9, 16–35. https://www.retronews.fr/journal/annales-hydrographiques/1-janvier-1887/1877/4868382/23
- P. W. Higgs (1979). “Dynamical symmetries in a spherical geometry I”. Journal of Physics A: Mathematical and General 12(3), 309–323. https://doi.org/10.1088/0305-4470/12/3/006
- G. W. Hill (1901). “On the use of the sphero-conic in astronomy”. The Astronomical Journal 22(511), 53–56. https://books.google.com/books?id=HJYRAAAAYAAJ&pg=PA53
- G. Huber (1900) “Über den sphärischen Kegelschnitt und seine abwickelbare Tangentenfläche”. Zeitschrift für Mathematik und Physik 45, 86–118 https://gdz.sub.uni-goettingen.de/id/PPN599415665_0045?tify={%22pages%22:%5b98%5d}
- I. Izmestiev (2019). “Spherical and hyperbolic conics”. Eighteen Essays in Non-Euclidean Geometry, European Mathematical Society. 262–320. https://arxiv.org/abs/1702.06860
- W. Killing (1885) “Die Mechanik in den Nicht-Euklidischen Raumformen”. Crelle’s Journal 98, 1–48. https://archive.org/details/journalfrdierei113crelgoog/page/n12/mode/2up
- V. V. Kozlov & A. O. Harin (1992). “Kepler's problem in constant curvature spaces”. Celestial Mechanics and Dynamical Astronomy 54(4), 393–399. https://doi.org/10.1007/BF00049149
- В. В. Козлов (2000). “Теоремы Ньютона и Айвори о притяжении в пространствах постоянной кривизны”. Вестник Московского университета. Серия 1: Математика. Механика 2000(5), 43–47. http://www.mathnet.ru/rus/vmumm1611
- J. C. Langer & D. A. Singer (2018). “On the geometric mean of a pair of oriented, meromorphic foliations, Part I”. Complex Analysis and its Synergies 4(1), 1–18. https://link.springer.com/article/10.1186/s40627-018-0015-z
- H. Liebmann (1902). “Die Kegelschnitte und die Planetenbewegung im nichteuklidischen Raum”. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch–Physische Classe 54, 393–423 https://archive.org/details/berichteberdiev19klasgoog/page/n432/mode/2up
- I. Lukáčs (1973) “A complete set of quantum-mechanical observables on a two-dimensional sphere”. Theoretical and Mathematical Physics 14(3), 271-281. https://doi.org/10.1007/BF01029309
- C. Neumann (1859). “De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur”. Crelle’s Journal 1859(56), 46–63. https://doi.org/10.1515/crll.1859.56.46
- S. Razin (1967). “Explicit (Noniterative) Loran Solution”. Navigation 14(3), 265–269. https://doi.org/10.1002/j.2161-4296.1967.tb02208.x
- G. Salmon (1927). A Treatise on the Analytic Geometry of Three Dimensions, 7th Edition. Chelsea. https://archive.org/details/treatiseonanalyt00salm_0/page/249/mode/2up
- P. J. Serret (1860). Théorie nouvelle géométrique et mécanique des lignes a double courbure. Mallet-Bachelier. https://archive.org/details/thorienouvelle00serruoft
- D. M. Y. Sommerville (1934). Analytic Geometry of Three Dimensions. Cambridge University Press.
- H. Stachel & J. Wallner (2004). “Ivory's theorem in hyperbolic spaces”. Siberian Mathematical Journal 45(4), 785–794. http://www.geometrie.tugraz.at/wallner/h_ivory.pdf
- G. Sykes (1877) “Spherical Conics”. Proceedings of the American Academy of Arts and Sciences 13, 375–395. https://www.jstor.org/stable/25138501
- H. Tranacher (2006) “Sphärische Kegelschnitte – didaktisch aufbereitet”. Unpublished thesis. Technischen Universität Wien. https://www.geometrie.tuwien.ac.at/theses/pdf/diplomarbeit_tranacher.pdf
- A. P. Veselov (1990). “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”. Journal of Geometry and Physics 7(1), 81–107. https://doi.org/10.1016/0393-0440(90)90021-t