List of plasma physicists
This is a list of physicists who have worked in or made notable contributions to the field of plasma physics.
| Name | Known for |
|---|---|
| Hannes Alfvén | 1970 Nobel Prize in Physics "for fundamental work and discoveries in magneto-hydrodynamics with fruitful applications in different parts of plasma physics" |
| Irving Langmuir | coined the term "plasma" to hint at the lifelike behavior of this state of matter. Developed electron temperature concepts and an electrostatic probe, the Langmuir probe. |
| Ksenia Aleksandrovna Razumova | first stable plasmas in tokamaks, first experimental measurement of plasma energy with diamagnetic loop, disruption studies, confinement studies, pioneering female leader of Russian fusion research, Alfvén Prize 2017 |
| Anatoly Vlasov | first suggested the Vlasov equation, a correct description of plasma with long-range interaction between particles |
| Andrey Dmitriyevich Sakharov | proposed the development of the tokamak device for use in controlled thermonuclear fusion. |
| Boris B. Kadomtsev | early plasma turbulence theory, stability and nonlinear theory of MHD and kinetic instabilities. James Clerk Maxwell Prize for Plasma Physics (1998) |
| Katherine Weimer | scientific research in the field of plasma magnetohydrodynamic equilibrium and stability theory |
| Yu Lin | computational research in nonlinear physics in the boundary layers of space plasmas, Katherine Weimer Award (2002). |
| Elena Belova | numerical contributions to the fundamental physics of magnetically confined plasmas, Katherine Weimer Award (2005). |
| Lin Yin | research on instabilities and magnetic reconnection in space plasmas and of the physics of relativistic laser-plasma interactions through complex modeling, Katherine Weimer Award (2008). |
| Yuan Ping | pioneering experiments to explore the interaction of high-intensity laser light with matter, Katherine Weimer Award (2011). |
| Anne White | fundamental contributions to the understanding of turbulent transport in tokamaks, Katherine Weimer Award (2014). |
| Félicie Albert | pioneering development and characterization of x-ray sources from laser-wakefield accelerators, Katherine Weimer Award (2017). |
| Maria Gatu Johnson | significant contributions to Inertial fusion sciences and pioneering work in Stellar Nucleosynthesis through nuclear measurements, Katherine Weimer Award (2019). |
| Kristian Birkeland | First suggested that polar electric currents (or auroral electrojets) are connected to a system of filaments (now called "Birkeland currents") that flow along geomagnetic field lines into and away from the polar region. |
| Lev Landau | Landau damping |
| Meghnad Saha | Saha ionization equation |
| Sydney Chapman | development of the kinetic theory of gases |
| Vitaly Ginzburg | theory of electromagnetic wave propagation in plasmas |
| Vitaly Shafranov | theoretical contributions to plasma physics (e.g. Grad–Shafranov equation, Kruskal–Shafranov instability) |
| Willard Harrison Bennett | Z-pinch is a form of "Bennett pinch". Also invented radio frequency mass spectrometry. |
| Lyman Spitzer | theoretical contributions to plasma physics, Spitzer resistivity, director of Project Matterhorn (1951-1961), James Clerk Maxwell Prize for Plasma Physics (1975) |
| Marshall Rosenbluth | fundamental theoretical contributions plasma physics, and in particular, plasma instabilities, James Clerk Maxwell Prize for Plasma Physics (1976) |
| John M. Dawson | introduced the use of computer simulation to plasma physics, James Clerk Maxwell Prize for Plasma Physics (1977) |
| Richard F. Post | developed the magnetic mirror concept for magnetic confinement fusion, James Clerk Maxwell Prize for Plasma Physics (1978) |
| Tihiro Ohkawa | developed the doublet approach for toroidal confinement fusion, James Clerk Maxwell Prize for Plasma Physics (1979) |
| Thomas H. Stix | developed the doublet approach for toroidal confinement fusion, James Clerk Maxwell Prize for Plasma Physics (1980) |
| John H. Nuckolls | introduced the inertial confinement approach to fusion, James Clerk Maxwell Prize for Plasma Physics (1981) |
| Ira B. Bernstein | fundamental theoretical contributions plasma physics including a wave mode in his name, James Clerk Maxwell Prize for Plasma Physics (1982) |
| Harold Fürth | fundamental contributions to plasma physics including resistive instabilities, Director of Princeton Plasma Physics Laboratory (1981-1990), James Clerk Maxwell Prize for Plasma Physics (1983) |
| Donald W. Kerst | invention of the levitated toroidal multipole, James Clerk Maxwell Prize for Plasma Physics (1984) |
| John H. Malmberg | experimental demonstration of Landau damping and development of pure electron plasmas, James Clerk Maxwell Prize for Plasma Physics (1985) |
| Harold Grad | theoretical contributions to magnetohydrodynamics, James Clerk Maxwell Prize for Plasma Physics (1986) |
| Bruno Coppi | pioneering work in the conceptual and engineering design of high field tokamaks, James Clerk Maxwell Prize for Plasma Physics (1987) |
| Norman Rostoker | pioneering theoretical contributions to the statistical mechanics of particles with Coulomb interactions, James Clerk Maxwell Prize for Plasma Physics (1988) |
| Ravindra Sudan | pioneered the study of the generation and propagation of intense ion beams, James Clerk Maxwell Prize for Plasma Physics (1989) |
| William L. Kruer | seminal contributions to the theoretical and experimental understanding of the intense electromagnetic waves with plasmas, James Clerk Maxwell Prize for Plasma Physics (1990) |
| Hans R. Griem | contributions to plasma spectroscopy and spectral line broadening in plasmas, James Clerk Maxwell Prize for Plasma Physics (1991) |
| John M. Greene | contributions to theory of magnetohydrodynamic equilibria and ideal and resistive instabilities, James Clerk Maxwell Prize for Plasma Physics (1992) |
| Russell M. Kulsrud | pioneering contributions to basic plasma theory, including magnetic reconnection, James Clerk Maxwell Prize for Plasma Physics (1993) |
| Roy W. Gould | pioneering research in beam-plasma interactions, James Clerk Maxwell Prize for Plasma Physics (1994) |
| Francis F. Chen | pioneering works on electrostatic probes, the plasma physics textbook "Introduction to Plasma Physics and Controlled Fusion"James Clerk Maxwell Prize for Plasma Physics (1995) |
| Thomas M. O'Neil | seminal contributions to plasma theory, including extension of Landau damping to the nonlinear regime James Clerk Maxwell Prize for Plasma Physics (1996) |
| Charles F. Kennel | fundamental contributions to the basic plasma physics of collisionless shocks James Clerk Maxwell Prize for Plasma Physics (1997) |
| John Bryan Taylor | helicity conservation, bootstrap current, ballooning transformation, plasma theory James Clerk Maxwell Prize for Plasma Physics (1999) |
| Akira Hasegawa | theories of nonlinear drift wave turbulence, including the Hasegawa-Mima equation James Clerk Maxwell Prize for Plasma Physics (2000) |
| Roald Sagdeev | contributions to modern plasma theory including collisionless shocks and stochastic magnetic fields James Clerk Maxwell Prize for Plasma Physics (2001) |
| Edward A. Frieman | theory of magnetically confined plasmas, including fundamental work on the formulation of the MHD Energy Principle James Clerk Maxwell Prize for Plasma Physics (2002) |
| Eugene N. Parker | seminal contributions in plasma astrophysics, including predicting the solar wind, explaining the solar dynamo, and formulating the theory of magnetic reconnection James Clerk Maxwell Prize for Plasma Physics (2003) |
| Noah Hershkowitz | fundamental contributions to the physics of low temperature plasmas James Clerk Maxwell Prize for Plasma Physics (2004) |
| Valery Godyak | fundamental contributions to the physics of low temperature plasmas James Clerk Maxwell Prize for Plasma Physics (2004) |
| Nathaniel Fisch | theoretical development of efficient rf-driven current in plasmas James Clerk Maxwell Prize for Plasma Physics (2005) |
| Chandrashekhar J. Joshi | application of plasma concepts to high energy electron and positron acceleration James Clerk Maxwell Prize for Plasma Physics (2006) |
| John Lindl | contributions in high energy density physics and inertial confinement fusion research James Clerk Maxwell Prize for Plasma Physics (2007) |
| Ronald C. Davidson | pioneering contributions to the physics of one-component non-neutral plasmas, first director of MIT Plasma Science and Fusion Center (1991-1996), director of Princeton Plasma Physics Laboratory (1991-1996), James Clerk Maxwell Prize for Plasma Physics (2008) |
| Maxim G. Ponomarev | pioneering investigations of disturbances of all plasma species by modeling charged particle emissions from imaginary and additional sources:. Imaginary-emission method for modeling disturbances of all magnetoplasma species: Reflecting and absorbing objects in motion through a rarefied plasma at different angles to the ambient magnetic field (Phys. Rev. E 54, 5591 – Published 1 November 1996) and First suggested the Resonant Moments method for Enhanced acceleration of electrons populations by crossing electron cyclotron waves in an ambient magnetic field |
| Miklos Porkolab | pioneering investigations of linear and nonlinear plasma waves and wave-particle interactions James Clerk Maxwell Prize for Plasma Physics (2009) |
| James Drake | theory of the fundamental mechanism of fast reconnection of magnetic fields in plasmas James Clerk Maxwell Prize for Plasma Physics (2010) |
| Gregor Eugen Morfill | discovery of plasma crystals as a solid state of aggregation of dusty plasmas (1994). Former Director of Max Planck Institute for Extraterrestrial Physics, James Clerk Maxwell Prize for Plasma Physics (2011) |
| Liu Chen | recipient of numerous awards for research on plasma physics (e.g. John Dawson Prize (2004), Hannes Alfvén Prize (2008) and James Clerk Maxwell Prize for Plasma Physics (2012)) |
| Phillip A. Sprangle | pioneering contributions to the physics of high intensity laser interactions with plasmas James Clerk Maxwell Prize for Plasma Physics (2013) |
| Clifford Surko | invention of and development of techniques to accumulate, confine, and utilize positron plasmas James Clerk Maxwell Prize for Plasma Physics (2014) |
| Masaaki Yamada | fundamental experimental studies of magnetic reconnection relevant to space, astrophysical and fusion plasmas James Clerk Maxwell Prize for Plasma Physics (2015) |
| Ellen G. Zweibel | seminal research on the energetics, stability, and dynamics of astrophysical plasmas James Clerk Maxwell Prize for Plasma Physics (2016) |
| Dmitri Ryutov | contributions to the theoretical plasma physics of low and high energy density plasmas James Clerk Maxwell Prize for Plasma Physics (2017) |
| Keith H. Burrell | established the links between sheared plasma flow and turbulent transport James Clerk Maxwell Prize for Plasma Physics (2018) |
| William H. Matthaeus | pioneering research into the nature of turbulence in space and astrophysical plasmas James Clerk Maxwell Prize for Plasma Physics (2019) |
| Warren Bicknell Mori | pioneering contributions to the theory and kinetic simulations of nonlinear processes in plasma-based acceleration James Clerk Maxwell Prize for Plasma Physics (2020) |
| Melvin Gottlieb | responsible for building Princeton Large Torus and Tokamak Fusion Test Reactor at PPPL, director of Princeton Plasma Physics Laboratory (1961-1980) |
| Robert J. Goldston | empirical scaling relationship for the confinement of energy in tokamak plasmas, director of Princeton Plasma Physics Laboratory (1997-2008) |
| Stewart C. Prager | director of the Madison Symmetric Torus (MST) experiment, director of Princeton Plasma Physics Laboratory (2008-2016) |
| Sir Steven Cowley | pioneering research in astrophysical and turbulent plasmas, director of Princeton Plasma Physics Laboratory (2018–present) |
| Friedrich Wagner | discovery of H-mode in ASDEX in 1984 |
| Anthony Peratt | influential advocate of plasma cosmology |
| David Bohm | derived the Bohm sheath criterion, which states that a plasma must flow with at least the speed of sound toward a solid surface |
| Eric Lerner | pioneer of focus fusion and advocate of plasma cosmology |
| Forrest S. Mozer | electric field measurements in space plasma |
| Fran Bošnjaković | |
| Franklin Chang-Diaz | created the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) concept, an electromagnetic thruster for spacecraft propulsion |
| Friedrich Paschen | Paschen's law, an equation relating the breakdown voltage to the gas pressure and electrode gap length |
| Ghulam Murtaza | |
| Mounir Laroussi | Plasma pencil, seminal contributions to the biomedical applications of low temperature plasma, plasma medicine |
| Nam Chang-hee | |
| Li Jiangang | |
| Harold P. Eubank | |
| Oscar Buneman | computational plasma physics and plasma simulation, Farley–Buneman instability |
| Peter Debye | Nobel Prize–winning physicist and chemist, after whom Debye shielding and Debye length are named |
| Philo Farnsworth | invention of the cathode ray tube, television and Farnsworth-Hirsch Fusor |
| Predhiman Krishnan Kaw | founding director of the Institute for Plasma Research (1986-2012) |
| Radu Bălescu | recipient of the Hannes Alfvén Prize in 2000 |
| Ratko Janev | |
| Rudolf Seeliger | specialized in electric discharges in gases and plasma physics |
| Subrata Roy | invention of the Wingless Electromagnetic Air Vehicle and serpentine geometry plasma actuator |
| Shaukat Hameed Khan | laser isotope separation, Chief Science Officer of the Pakistan Atomic Energy Commission (1969-2005) |
| William Crookes | pioneer of vacuum tubes and the Crookes tube |
| A A Mamun | pioneer of nonlinear dynamics of dusty plasma physics, Friedrich Wilhelm Bessel Research Award in 2009 from the Alexander von Humboldt Foundation |
See also
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.