Ioah Guyot
Ioah Guyot is a seamount in the Pacific Ocean, close to the Marshall Islands.[1] Part of the Magellan Seamounts, it is a shield volcano that has erupted alkali basalt and hawaiite 87 million years ago, but may have continued erupting into the Miocene. During the Cretaceous, reefs developed on the guyot.
| Ioah Guyot | |
|---|---|
![]() |

Geography and geomorphology
The guyot belongs to the Magellan Seamounts[2] which stretch from the Mariana Trench to Ita Mai Tai seamount.[3] It is also known as Fedorov and Ioan/[4]IOAN, which stands for "Institute of Oceanology of the Academy of Sciences of the USSR".[5] Ita Mai Tai guyot lies south-southeast of Ioah and Pallada guyot north-northwest,[6] other seamounts in the area east of Ioah are Changpogo, Gramberg, Zatonskii and Arirang.[7] There are about 1000 seamounts in the central western Pacific.[3]
Ioah Guyot is a shield volcano[8][9] with an arcuate shape; the two halves that make it up have dimensions of 110 by 66 kilometres (68 mi × 41 mi) and 83 by 65 kilometres (52 mi × 40 mi).[1] The guyot rises 4.5 kilometres (2.8 mi) from the seafloor to 1,420 metres (4,660 ft)[5]–1,380 metres (4,530 ft) depth, forming a summit plateau with a surface area of 1,380 square kilometres (530 sq mi)[10] that is covered by 25–75-metre (82–246 ft) high hills.[1] The rim of the summit plateau is formed by volcanic rocks on the eastern part of the seamount and by reefal limestones on the western;[11] the reef deposits form a sometimes 5 kilometres (3.1 mi) wide[12] and in total about 200 kilometres (120 mi) long ring around the summit platform of Ioah Guyot[13] and cover an area of about 315 square kilometres (122 sq mi), making it the largest limestone outcrop of the Magellan Seamounts.[14] The lower slopes are gentle but steepen between 1,700–2,000-metre (5,600–6,600 ft) depth. Only the lower slopes are covered with thick sediment layers; the upper slopes have sediment accumulations only in sheltered areas[5] and also feature step-like structures.[1] A number of volcanic cones grew on Ioah and form morphostructures, with a density of about 11.1 vents per 1,000 square kilometres (390 sq mi).[15][16] Some of these vents form alignments and Ioah lies at the intersection of two strike-slip faults.[17][9] The seamount rises from the East Mariana Basin over Jurassic seafloor, between the two Ogasawara Fracture Zones.[18][19][20]
Composition
Volcanic rocks found on Ioah Guyot include alkali basalt, tholeiite and hawaiite, plus ankaramite, phonolite and trachybasalt;[21][22][23] as well as zeolites formed by hydrothermal processes.[21] Breccia and sandstones cover the exposed rocks[5] and formed through the breakup of basaltic rocks.[24] Reef limestones and other carbonates were emplaced on the seamount, followed during the Eocene-Pleistocene by pelagic sediments.[25] Clay deposits on the slopes and turbidites have also been reported.[26]
Ferromanganese crusts on the seamount contain apatite, asbolane, buserite, calcite, clay, feldspar, ferrihydrite, feroxyhyte, goethite, hematite, quartz and todorokite[27] and reach thicknesses of 10 centimetres (3.9 in),[5] although they only cover small sectors of Ioah Guyot.[28] Phosphate-containing minerals were deposited over time on Ioah; presently the guyot contains about 150,000,000–200,000,000 tonnes (150,000,000–200,000,000 long tons; 170,000,000–220,000,000 short tons) of phosphorite ore.[29] Some of these ferromanganese deposits form nodules encased within limestones.[30] Spherules of cosmic origin have been found.[31]
History
The seamount developed about 87 million years ago on the Pacific Plate and is now extinct;[4] its estimated age is placed in a range between 88.5 and 86.2 million years. It was located in the Southern Hemisphere as it formed.[19][8] Some secondary volcanic cones may be much younger, of Miocene age.[32] The formation of Ioah and the other Magellan Seamounts has been explained by a hotspot that would now be located close to the Rarotonga hotspot, Samoa hotspot and Society hotspot were it still active.[22][33][34] Compositionally, volcanic rocks from Ioah resemble these of the Rarotonga hotspot.[35]
During the Aptian-Cenomanian, limestones and volcanic rocks formed sediments on Ioah Guyot which developed a reef system.[36] A secondary reefal phase occurred during Santonian to Maastrichtian times[21] and a third one during the Eocene.[37] Ioah developed the largest reefs of the Magellan Seamounts,[2] with coral material accumulating to thicknesses of 200–300 metres (660–980 ft).[23] During the Eocene, tuffs were emplaced on the seamount.[38] Ferromanganese crusts developed later during the Paleogene[39] and Miocene-Pleistocene,[40] and up to 150 metres (490 ft) sediments accumulated on the summit plateau.[11]
Biology
Species that lived on Ioah Guyot during the Cretaceous include ammonoids, belemnites,[41] bivalves, bryozoans, cephalopods, corals, crinoids, foraminifera, gastropods, rudists, sea pens,[23] [42][43] sea urchins[5] and sponges.[23] Presently, a rich fauna has been identified on Ioah Guyot, including scleractinian corals without zooxanthelles such as Fungiacyathus pliciseptus and Peponocyathus australiensis which is usually found in much shallower waters.[18][25][44]
See also
References
- Mel'nikov, Pletnev & Basov 2006, p. 4.
- Mel'nikov, Tugolesov & Pletnev 2010, p. 589.
- Mel'nikov, Pletnev & Basov 2006, p. 3.
- "Ioah Seamount". Seamount Catalog. Retrieved 13 September 2018.
- Bogdanov et al. 1987, p. 971.
- Asavin, A. M.; Kubrakova, I. V.; Mel’nikov, M. E.; Tyutyunnik, O. A.; Chesalova, E. I. (May 2010). "Geochemical zoning in ferromanganese crusts of Ita-MaiTai guyot". Geochemistry International. 48 (5): 425. doi:10.1134/s0016702910050010. ISSN 0016-7029. S2CID 129118428.
- Mel'nikov et al. 2016, p. 4.
- Glasby et al. 2007, p. 317.
- Utkin, V. P. (June 2006). "Role of strike-slip faulting of the oceanic lithosphere in the formation of pacific volcanic belts". Doklady Earth Sciences. 409 (1): 693. Bibcode:2006DokES.409..692U. doi:10.1134/S1028334X06050023. S2CID 128625849.
- Okamoto, Nobuyuki; Usui, Akira (4 March 2014). "Regional Distribution of Co-Rich Ferromanganese Crusts and Evolution of the Seamounts in the Northwestern Pacific". Marine Georesources & Geotechnology. 32 (3): 194. doi:10.1080/1064119x.2013.877110. ISSN 1064-119X. S2CID 128677808.
- Mel'nikov, Pletnev & Basov 2006, p. 5.
- Pletnev 2021, p. 75.
- Pletnev 2019, p. 438.
- Pletnev 2021, p. 72.
- Mel'nikov, Tugolesov & Pletnev 2010, p. 586.
- Mel'nikov et al. 2016, p. 437.
- Mel'nikov et al. 2016, p. 441.
- Keller & Shcherba 2006, p. 240.
- Glasby et al. 2007, p. 316.
- Koppers et al. 1998, p. 56.
- Zakharov et al. 2012, p. 147.
- Koppers et al. 1998, p. 55.
- Mel'nikov, Pletnev & Basov 2006, p. 6.
- Bogdanov et al. 1987, p. 977.
- Keller & Shcherba 2006, p. 238.
- Pletnev 2019, p. 443.
- Glasby et al. 2007, p. 320.
- Bogdanov et al. 1987, p. 976.
- Glasby et al. 2007, p. 319.
- Mel'nikov et al. 2016, p. 5.
- Savelyev, D. P.; Khanchuk, A. I.; Savelyeva, O. L.; Moskaleva, S. V.; Mikhailik, P. E. (1 April 2020). "First Find of Platinum in Cosmogenic Spherules of Ferromanganese Crusts (Fedorov Guyot, Magellan Seamounts, Pacific Ocean)". Doklady Earth Sciences. 491 (2): 199. Bibcode:2020DokES.491..199S. doi:10.1134/S1028334X20040157. ISSN 1531-8354. S2CID 219638248.
- Mel'nikov et al. 2016, p. 439.
- Koppers et al. 2003, p. 19.
- Koppers et al. 1998, p. 66.
- Koppers et al. 2003, p. 25.
- Zakharov et al. 2012, p. 146.
- Pletnev 2021, p. 81.
- Pletnev 2021, p. 80.
- Bogdanov et al. 1987, p. 982.
- Bogdanov et al. 1987, p. 981.
- Zakharov et al. 2012, p. 145.
- Zakharov et al. 2012, pp. 146–147.
- Reich, Mike; Kutscher, Manfred (2015). "Sea pens (Octocorallia: Pennatulacea) from the Late Cretaceous of northern Germany". Journal of Paleontology. 85 (6): 1043. doi:10.1666/10-109.1. ISSN 0022-3360. S2CID 130123892.
- Keller & Shcherba 2006, p. 239.
Sources
- Bogdanov, Yu. A.; Zonenshayn, L. P.; Lisitsyn, A. P.; Podrazhanskiy, A. M.; Sagalevich, A. M.; Sorokhtin, O. G. (August 1987). "Ferromanganese Ores on Seamounts". International Geology Review. 29 (8): 968–984. Bibcode:1987IGRv...29..968B. doi:10.1080/00206818709466192. ISSN 0020-6814.
- Glasby, Geoffrey P.; Ren, Xiangwen; Shi, Xuefa; Pulyaeva, Irina A. (2 February 2007). "Co–rich Mn crusts from the Magellan Seamount cluster: the long journey through time". Geo-Marine Letters. 27 (5): 315–323. Bibcode:2007GML....27..315G. doi:10.1007/s00367-007-0055-5. S2CID 128543708.
- Keller, N. B.; Shcherba, I. G. (March 2006). "Features of the distribution of azooxanthellata scleractinia (Anthozoa) on mid-pacific guyots". Oceanology. 46 (2): 238–241. Bibcode:2006Ocgy...46..238K. doi:10.1134/s000143700602010x. ISSN 0001-4370. S2CID 128414450.
- Koppers, Anthony A.P.; Staudigel, Hubert; Wijbrans, Jan R.; Pringle, Malcolm S. (November 1998). "The Magellan seamount trail: implications for Cretaceous hotspot volcanism and absolute Pacific plate motion". Earth and Planetary Science Letters. 163 (1–4): 53–68. Bibcode:1998E&PSL.163...53K. doi:10.1016/S0012-821X(98)00175-7. ISSN 0012-821X.
- Koppers, Anthony A. P.; Staudigel, Hubert; Pringle, Malcolm S.; Wijbrans, Jan R. (October 2003). "Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?". Geochemistry, Geophysics, Geosystems. 4 (10): 1089. Bibcode:2003GGG.....4.1089K. doi:10.1029/2003GC000533.
- Mel'nikov, M. E.; Avdonin, V. V.; Pletnev, S. P.; Sedysheva, T. E. (January 2016). "Buried ferromanganese nodules of the Magellan Seamounts". Lithology and Mineral Resources. 51 (1): 1–12. doi:10.1134/s0024490215060073. ISSN 0024-4902. S2CID 129963490.
- Mel'nikov, M. E.; Pletnev, S. P.; Basov, I. A. (2006). "New Geological and Paleontological Data on Fedorov Guyot, Magellan Seamounts, Pacific". Tikhookean. Geol. (in Russian). 25 (1): 3–13.
- Mel'nikov, M. E.; Pletnev, S. P.; Anokhin, V. M.; Sedysheva, T. E.; Ivanov, V. V. (November 2016). "Volcanic edifices on guyots of the Magellan Seamounts (Pacific Ocean)". Russian Journal of Pacific Geology. 10 (6): 435–442. doi:10.1134/s1819714016060038. ISSN 1819-7140. S2CID 132364693.
- Mel'nikov, M. E.; Tugolesov, D. D.; Pletnev, S. P. (August 2010). "The structure of the incoherent sediments in the Ita Mai Tai Guyot (Pacific Ocean) based on geoacoustic profiling data". Oceanology. 50 (4): 582–590. Bibcode:2010Ocgy...50..582M. doi:10.1134/s0001437010040144. ISSN 0001-4370. S2CID 128475565.
- Pletnev, S. P. (1 September 2019). "Main Types of Aptian–Cenomanian Sedimentary Rocks on Guyots of the Magellan Mountains, Pacific Ocean". Russian Journal of Pacific Geology. 13 (5): 436–445. doi:10.1134/S1819714019050087. ISSN 1819-7159. S2CID 203654288.
- Pletnev, S. P. (1 January 2021). "The Main Types of Paleogene Sedimentary Rocks and Conditions of their Formation on the Guyots of the Magellan Seamounts (Pacific Ocean)". Russian Journal of Pacific Geology. 15 (1): 72–83. doi:10.1134/S1819714021010061. ISSN 1819-7159. S2CID 232042072.
- Zakharov, Yuri D.; Melnikov, Mikhael E.; Popov, Alexander M.; Pletnev, Sergej P.; Khudik, Vladimir D.; Punina, Tatiana A. (January 2012). "Cephalopod and brachiopod fossils from the Pacific: Evidence from the Upper Cretaceous of the Magellan Seamounts". Geobios. 45 (1): 145–156. doi:10.1016/j.geobios.2011.11.011. ISSN 0016-6995.
_Guyot.png.webp)