Atmospheric icing

Atmospheric icing occurs in the atmosphere when water droplets freeze on objects they come in contact with. Icing conditions can be particularly dangerous to aircraft, as the built-up ice changes the aerodynamics of the flight surfaces, which can increase the risk of a stall. For this reason, on-board ice protection systems have been developed.

The effect of atmospheric icing on a tree in the Black Forest of Germany.

Water does not always freeze at 0 °C (32 °F). Water that persists in liquid state below this temperature is said to be supercooled, and supercooled water droplets cause icing on aircraft. Below −20 °C (−4 °F), icing is rare because clouds at these temperatures usually consist of ice particles rather than supercooled water droplets. Below −48 °C (−54 °F), supercooled water cannot exist, therefore icing is impossible.[1]

Icing also occurs on towers, wind turbines, boats, oil rigs, trees and other objects exposed to low temperatures and water droplets. Unmanned aircraft are particularly sensitive to icing.[2] In cold climates on land, atmospheric icing can be common as elevated terrain interacts with cold clouds.[3] Ice loads are a major cause of catastrophic failures of overhead electric power lines. Their estimation is, therefore, crucial in the structural design of power line systems[4] and can be done by numerical icing models that include meteorological data.[5]

See also

References

  1. Moore, Emily; Valeria Molinero (24 November 2011). "structural transformation in supercooled water controls the crystallization rate of ice". Nature. 479 (7374): 506–508. arXiv:1107.1622. Bibcode:2011Natur.479..506M. doi:10.1038/nature10586. PMID 22113691. S2CID 1784703.
  2. Hann, Richard; Johansen, Tor (2020). "Unsettled Topics in Unmanned Aerial Vehicle Icing (EPR2020008 Research Report) - SAE Mobilus". saemobilus.sae.org. doi:10.4271/epr2020008. Retrieved 2021-02-14.
  3. Yang, Jing; Jones, Kathleen F.; Yu, Wei; Morris, Robert (2012-09-08). "Simulation of in-cloud icing events on Mount Washington with the GEM-LAM". Journal of Geophysical Research: Atmospheres. 117 (D17): n/a. Bibcode:2012JGRD..11717204Y. doi:10.1029/2012jd017520. ISSN 0148-0227.
  4. Farzaneh, M. (2008) Atmospheric Icing of Power Networks. Springer Science & Business Media, 2008, 381 p. ISBN 978-1-4020-8530-7
  5. Makkonen, L. (2000) Models for the growth of rime, glaze, icicles and wet snow deposits on structures. Philosophical Transactions of the Royal Society of London A, 358 (1776): 2913-2939.
Sources
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.