Dirichlet beta function

In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the Riemann zeta function. It is a particular Dirichlet L-function, the L-function for the alternating character of period four.

The Dirichlet beta function

Definition

The Dirichlet beta function is defined as

or, equivalently,

In each case, it is assumed that Re(s) > 0.

Alternatively, the following definition, in terms of the Hurwitz zeta function, is valid in the whole complex s-plane:[1]

Another equivalent definition, in terms of the Lerch transcendent, is:

which is once again valid for all complex values of s.

The Dirichlet beta function can also be written in terms of the Polylogarithm function:

Also the series representation of Dirichlet beta function can be formed in terms of the polygamma function

but this formula is only valid at positive integer values of .

Euler product formula

It is also the simplest example of a series non-directly related to which can also be factorized as an Euler product, thus leading to the idea of Dirichlet character defining the exact set of Dirichlet series having a factorization over the prime numbers.

At least for Re(s)  1:

where p≡1 mod 4 are the primes of the form 4n+1 (5,13,17,...) and p≡3 mod 4 are the primes of the form 4n+3 (3,7,11,...). This can be written compactly as

Functional equation

The functional equation extends the beta function to the left side of the complex plane Re(s) ≤ 0. It is given by

where Γ(s) is the gamma function.

Special values

Some special values include:

where G represents Catalan's constant, and

where in the above is an example of the polygamma function. More generally, for any positive integer k:

where represent the Euler numbers. For integer k  0, this extends to:

Hence, the function vanishes for all odd negative integral values of the argument.

For every positive integer k:

where is the Euler zigzag number.

Also it was derived by Malmsten in 1842 that

sapproximate value β(s)OEIS
1/50.5737108471859466493572665A261624
1/40.5907230564424947318659591A261623
1/30.6178550888488520660725389A261622
1/20.6676914571896091766586909A195103
10.7853981633974483096156608A003881
20.9159655941772190150546035A006752
30.9689461462593693804836348A153071
40.9889445517411053361084226A175572
50.9961578280770880640063194A175571
60.9986852222184381354416008A175570
70.9995545078905399094963465
80.9998499902468296563380671
90.9999496841872200898213589
100.9999831640261968774055407

There are zeros at -1; -3; -5; -7 etc.

See also

References

  1. Dirichlet Beta – Hurwitz zeta relation, Engineering Mathematics
  • Glasser, M. L. (1972). "The evaluation of lattice sums. I. Analytic procedures". J. Math. Phys. 14 (3): 409. Bibcode:1973JMP....14..409G. doi:10.1063/1.1666331.
  • J. Spanier and K. B. Oldham, An Atlas of Functions, (1987) Hemisphere, New York.
  • Weisstein, Eric W. "Dirichlet Beta Function". MathWorld.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.