Cutwidth

The cutwidth of an undirected graph  is the smallest integer  with the following property: there is an ordering of the vertices of , such that for every , there are at most  edges with one endpoint in  and the other endpoint in .[1] [2]

See also

References

  1. Chung, Fan R. K. (1985). "On the cutwidth and the topological bandwidth of a Tree". SIAM Journal on Algebraic and Discrete Methods. 6 (2): 268–277. doi:10.1137/0606026. ISSN 0196-5212.
  2. Thilikos, Dimitrios M.; Serna, Maria; Bodlaender, Hans L. (2005). "Cutwidth I: A linear time fixed parameter algorithm". Journal of Algorithms. 56 (1): 1–24. doi:10.1016/j.jalgor.2004.12.001. ISSN 0196-6774.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.