Complex analytic variety
In mathematics, and in particular differential geometry and complex geometry, a complex analytic variety [note 1] or complex analytic space is a generalization of a complex manifold which allows the presence of singularities. Complex analytic varieties are locally ringed spaces which are locally isomorphic to local model spaces, where a local model space is an open subset of the vanishing locus of a finite set of holomorphic functions.
Definition
Denote the constant sheaf on a topological space with value by . A -space is a locally ringed space , whose structure sheaf is an algebra over .
Choose an open subset of some complex affine space , and fix finitely many holomorphic functions in . Let be the common vanishing locus of these holomorphic functions, that is, . Define a sheaf of rings on by letting be the restriction to of , where is the sheaf of holomorphic functions on . Then the locally ringed -space is a local model space.
A complex analytic variety is a locally ringed -space which is locally isomorphic to a local model space.
Morphisms of complex analytic varieties are defined to be morphisms of the underlying locally ringed spaces, they are also called holomorphic maps.
The associated complex analytic space (variety) is says that;[1]
- Let X is scheme finite type over , and cover X with open affine subset (). Then each is an algebra of finite type over , and . Where are polynomial in , which can be regarded as a holomorphic function on . Therefore, their common zero of the set is the complex analytic subspace . Here, scheme X obtained by glueing the data of the set , and then the same data can be used to glueing the complex analytic space into an complex analytic space , so we call a associated complex analytic space with X. The complex analytic space X is reduced if and only if the associated complex analytic space reduced.
See also
- Algebraic variety - Roughly speaking, an (complex) analytic variety is a zero locus of a set of an (complex) analytic function, while an algebraic variety is a zero locus of a set of a polynomial function and allowing singular point, especially if the algebraic variety is algebraically closed field, then that is reduced.
- Analytic space
- Complex algebraic variety
- GAGA
Note
- Hartshorne 1977, p. 439.
Annotation
- It is sometimes required to be reduced, then it is called reduced complex analytic space to distinguish it from complex analytic space.
References
- Aroca, José Manuel; Hironaka, Heisuke; Vicente, José Luis (3 November 2018). Complex Analytic Desingularization. doi:10.1007/978-4-431-49822-3. ISBN 978-4-431-49822-3.
- Bloom, Thomas; Herrera, Miguel (1969). "De Rham cohomology of an analytic space". Inventiones Mathematicae. 7 (4): 275–296. Bibcode:1969InMat...7..275B. doi:10.1007/BF01425536. S2CID 122113902.
- Cartan, H.; Bruhat, F.; Cerf, Jean.; Dolbeault, P.; Frenkel, Jean.; Hervé, Michel; Malatian.; Serre, J-P. "Séminaire Henri Cartan, Tome 4 (1951-1952)". (no.10-13)
- Fischer, G. (14 November 2006). Complex Analytic Geometry. ISBN 978-3-540-38121-1.
- Grauert, Hans; Remmert, Reinhold (1958). "Komplexe Räume". Mathematische Annalen. 136 (3): 245–318. doi:10.1007/BF01362011. S2CID 121348794.
- Grauert, H.; Remmert, R. (6 December 2012). Coherent Analytic Sheaves. ISBN 978-3-642-69582-7.
- Grauert, H.; Peternell, Thomas; Remmert, R. (9 March 2013). Several Complex Variables VII: Sheaf-Theoretical Methods in Complex Analysis. ISBN 978-3-662-09873-8.
- Grothendieck, Alexander; Raynaud, Michele (2002). "Revêtements étales et groupe fondamental§XII. Géométrie algébrique et géométrie analytique". Revêtements étales et groupe fondamental (SGA 1) (in French). arXiv:math/0206203. doi:10.1007/BFb0058656. ISBN 978-2-85629-141-2.
- Hartshorne, Robin (1977). Algebraic Geometry. Graduate Texts in Mathematics. Vol. 52. Berlin, New York: Springer-Verlag. doi:10.1007/978-1-4757-3849-0. ISBN 978-0-387-90244-9. MR 0463157. Zbl 0367.14001.
- Remmert, Reinhold (1998). "From Riemann Surfaces to Complex Spaces". Séminaires et Congrès. Zbl 1044.01520.
- Serre, Jean-Pierre (1956). "Géométrie algébrique et géométrie analytique". Annales de l'Institut Fourier. 6: 1–42. doi:10.5802/aif.59. ISSN 0373-0956. MR 0082175.
- Tognoli, A. (2 June 2011). Tognoli, A (ed.). Singularities of Analytic Spaces: Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Bressanone (Bolzano), Italy, June 16-25, 1974. doi:10.1007/978-3-642-10944-7. ISBN 978-3-642-10944-7.
External links
- Kiran Kedlaya. 18.726 Algebraic Geometry (LEC # 30 - 33 GAGA)Spring 2009. Massachusetts Institute of Technology: MIT OpenCourseWare Creative Commons BY-NC-SA.
- Tasty Bits of Several Complex Variables(p.137) open source book by Jiří Lebl BY-NC-SA.
- Onishchik, A.L. (2001) [1994], "Analytic space", Encyclopedia of Mathematics, EMS Press
- El'kin, A.G. (2001) [1994], "Analytic set", Encyclopedia of Mathematics, EMS Press