List of numeral systems

There are many different numeral systems, that is, writing systems for expressing numbers.

By culture / time period

Name Base Sample Approx. First Appearance
Proto-cuneiform numerals
Proto-Elamite numerals
Sumerian numerals10+603,100 BCE
Egyptian numerals10
3,000 BCE
Elamite numerals
Indus numerals
Babylonian numerals10+60 2,000 BCE
Chinese numerals
Japanese numerals
Korean numerals (Sino-Korean)
Vietnamese numerals (Sino-Vietnamese)
10

零一二三四五六七八九十百千萬億 (Default, Traditional Chinese)
〇一二三四五六七八九十百千万亿 (Default, Simplified Chinese)
零壹貳參肆伍陸柒捌玖拾佰仟萬億 (Financial, T. Chinese)
零壹贰叁肆伍陆柒捌玖拾佰仟萬億 (Financial, S. Chinese)

1,600 BCE
Aegean numerals10𐄇 𐄈 𐄉 𐄊 𐄋 𐄌 𐄍 𐄎 𐄏  ( )
𐄐 𐄑 𐄒 𐄓 𐄔 𐄕 𐄖 𐄗 𐄘  ( )
𐄙 𐄚 𐄛 𐄜 𐄝 𐄞 𐄟 𐄠 𐄡  ( )
𐄢 𐄣 𐄤 𐄥 𐄦 𐄧 𐄨 𐄩 𐄪  ( )
𐄫 𐄬 𐄭 𐄮 𐄯 𐄰 𐄱 𐄲 𐄳  ( )
1,500 BCE
Bengali numerals10০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯1,400 BCE
Roman numeralsI V X L C D M1,000 BCE
Hebrew numerals10א ב ג ד ה ו ז ח ט
י כ ל מ נ ס ע פ צ
ק ר ש ת ך ם ן ף ץ
800 BCE
Indian numerals10Tamil ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯ ௰

Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९
Tibetan ༠ ༡ ༢ ༣ ༤ ༥ ༦ ༧ ༨ ༩

750 – 690 BCE
Greek numerals10ō α β γ δ ε ϝ ζ η θ ι
ο Αʹ Βʹ Γʹ Δʹ Εʹ Ϛʹ Ζʹ Ηʹ Θʹ
<400 BCE
Phoenician numerals10𐤙 𐤘 𐤗 𐤛𐤛𐤛 𐤛𐤛𐤚 𐤛𐤛𐤖 𐤛𐤛 𐤛𐤚 𐤛𐤖 𐤛 𐤚 𐤖 [1]<250 BCE[2]
Chinese rod numerals10𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 𝍩1st Century
Ge'ez numerals10፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱
፲ ፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺ ፻
3rd – 4th Century
15th Century (Modern Style)[3]
Armenian numerals10Ա Բ Գ Դ Ե Զ Է Ը Թ ԺEarly 5th Century
Khmer numerals10០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩Early 7th Century
Thai numerals10๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙7th Century[4]
Abjad numerals10غ ظ ض ذ خ ث ت ش ر ق ص ف ع س ن م ل ك ي ط ح ز و هـ د ج ب ا<8th Century
Eastern Arabic numerals10٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠8th Century
Vietnamese numerals (Chữ Nôm)10𠬠 𠄩 𠀧 𦊚 𠄼 𦒹 𦉱 𠔭 𠃩<9th Century
Western Arabic numerals100 1 2 3 4 5 6 7 8 99th Century
Glagolitic numerals10Ⰰ Ⰱ Ⰲ Ⰳ Ⰴ Ⰵ Ⰶ Ⰷ Ⰸ ...9th Century
Cyrillic numerals10а в г д е ѕ з и ѳ і ...10th Century
Rumi numerals1010th Century
Burmese numerals10၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉11th Century[5]
Tangut numerals10𘈩 𗍫 𘕕 𗥃 𗏁 𗤁 𗒹 𘉋 𗢭 𗰗11th Century (1036)
Cistercian numerals1013th Century
Maya numerals5+20 <15th Century
Muisca numerals20<15th Century
Korean numerals (Hangul)10하나 둘 셋 넷 다섯 여섯 일곱 여덟 아홉 열15th Century (1443)
Aztec numerals2016th Century
Sinhala numerals10෦ ෧ ෨ ෩ ෪ ෫ ෬ ෭ ෮ ෯ 𑇡 𑇢 𑇣
𑇤 𑇥 𑇦 𑇧 𑇨 𑇩 𑇪 𑇫 𑇬 𑇭 𑇮 𑇯 𑇰 𑇱 𑇲 𑇳 𑇴
<18th Century
Pentimal runes1019th Century
Cherokee numerals1019th Century (1820s)
Kaktovik Inupiaq numerals5+2020th Century (1994)

By type of notation

Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.

Standard positional numeral systems

A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name.[6] There have been some proposals for standardisation.[7]

BaseNameUsage
2BinaryDigital computing, imperial and customary volume (bushel-kenning-peck-gallon-pottle-quart-pint-cup-gill-jack-fluid ounce-tablespoon)
3TernaryCantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base
4QuaternaryData transmission, DNA bases and Hilbert curves; Chumashan languages, and Kharosthi numerals
5QuinaryGumatj, Ateso, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks
6SenaryDiceware, Ndom, Kanum, and Proto-Uralic language (suspected)
7SeptenaryWeeks timekeeping, Western music letter notation
8OctalCharles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, compact notation for binary numbers, Xiantian (I Ching, China)
9NonaryBase9 encoding; compact notation for ternary
10Decimal (also known as denary)Most widely used by modern civilizations[8][9][10]
11UndecimalA base-11 number system was attributed to the Māori (New Zealand) in the 19th century[11] and the Pangwa (Tanzania) in the 20th century.[12] Briefly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal. Used as a check digit in ISBN for 10-digit ISBNs.
12DuodecimalLanguages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Roman fractions; penny and shilling
13TridecimalBase13 encoding; Conway base 13 function.
14TetradecimalProgramming for the HP 9100A/B calculator[13] and image processing applications;[14] pound and stone.
15PentadecimalTelephony routing over IP, and the Huli language.
16Hexadecimal

(also known as sexadecimal)

Base16 encoding; compact notation for binary data; tonal system; ounce and pound.
17HeptadecimalBase17 encoding.
18OctodecimalBase18 encoding; a base such that 7n is palindromic for n = 3, 4, 6, 9.
19EnneadecimalBase19 encoding.
20VigesimalBasque, Celtic, Maya, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages; shilling and pound
21UnvigesimalBase21 encoding; also the smallest base where all of 1/2 to 1/18 have periods of 4 or shorter.
22DuovigesimalBase22 encoding.
23TrivigesimalKalam language,[15] Kobon language
24Tetravigesimal24-hour clock timekeeping; Kaugel language.
25PentavigesimalCompact notation for quinary.
26HexavigesimalBase26 encoding; sometimes used for encryption or ciphering,[16] using all letters in the English alphabet
27Heptavigesimal SeptemvigesimalTelefol[17] and Oksapmin[18] languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names,[19] to provide a concise encoding of alphabetic strings,[20] or as the basis for a form of gematria.[21] Compact notation for ternary.
28OctovigesimalBase28 encoding; months timekeeping.
29EnneavigesimalBase29 encoding.
30TrigesimalThe Natural Area Code, this is the smallest base such that all of 1/2 to 1/6 terminate, a number n is a regular number if and only if 1/n terminates in base 30.
31UntrigesimalBase31 encoding.
32DuotrigesimalBase32 encoding; the Ngiti language.
33TritrigesimalUse of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong.
34TetratrigesimalUsing all numbers and all letters except I and O; the smallest base where 1/2 terminates and all of 1/2 to 1/18 have periods of 4 or shorter.
35PentatrigesimalUsing all numbers and all letters except O.
36HexatrigesimalBase36 encoding; use of letters with digits.
37HeptatrigesimalBase37 encoding; using all numbers and all letters of the Spanish alphabet.
38OctotrigesimalBase38 encoding; use all duodecimal digits and all letters.
39EnneatrigesimalBase39 encoding.
40QuadragesimalDEC RADIX 50/MOD40 encoding used to compactly represent file names and other symbols on Digital Equipment Corporation computers. The character set is a subset of ASCII consisting of space, upper case letters, the punctuation marks "$", ".", and "%", and the numerals.
42DuoquadragesimalBase42 encoding; largest base for which all minimal primes are known.
45PentaquadragesimalBase45 encoding.
47SeptaquadragesimalSmallest base for which no generalized Wieferich primes are known.
48OctoquadragesimalBase48 encoding.
49EnneaquadragesimalCompact notation for septenary.
50QuinquagesimalBase50 encoding; SQUOZE encoding used to compactly represent file names and other symbols on some IBM computers. Encoding using all Gurmukhi characters plus the Gurmukhi digits.
52DuoquinquagesimalBase52 encoding, a variant of Base62 without vowels except Y and y[22] or a variant of Base26 using all lower and upper case letters.
54TetraquinquagesimalBase54 encoding.
56HexaquinquagesimalBase56 encoding, a variant of Base58.[23]
57HeptaquinquagesimalBase57 encoding, a variant of Base62 excluding I, O, l, U, and u[24] or I, 1, l, 0, and O.[25]
58OctoquinquagesimalBase58 encoding, a variant of Base62 excluding 0 (zero), I (capital i), O (capital o) and l (lower case L).[26]
60SexagesimalBabylonian numerals; NewBase60 encoding, similar to Base62, excluding I, O, and l, but including _(underscore);[27] degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari and Sumerian languages.
62DuosexagesimalBase62 encoding, using 0–9, A–Z, and a–z.
64TetrasexagesimalBase64 encoding; I Ching in China.
This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters (+ and /).
72DuoseptuagesimalBase72 encoding; the smallest base >2 such that no three-digit narcissistic number exists.
80OctogesimalBase80 encoding.
81UnoctogesimalBase81 encoding, using as 81=34 is related to ternary.
85PentoctogesimalAscii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters.
89EnneaoctogesimalLargest base for which all left-truncatable primes are known.
90NonagesimalRelated to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2).
91UnnonagesimalBase91 encoding, using all ASCII except "-" (0x2D), "\" (0x5C), and "'" (0x27); one variant uses "\" (0x5C) in place of """ (0x22).
92DuononagesimalBase92 encoding, using all of ASCII except for "`" (0x60) and """ (0x22) due to confusability.[28]
93TrinonagesimalBase93 encoding, using all of ASCII printable characters except for "," (0x27) and "-" (0x3D) as well as the Space character. "," is reserved for delimiter and "-" is reserved for negation.[29]
94TetranonagesimalBase94 encoding, using all of ASCII printable characters.[30]
95PentanonagesimalBase95 encoding, a variant of Base94 with the addition of the Space character.[31]
96HexanonagesimalBase96 encoding, using all of ASCII printable characters as well as the two extra duodecimal digits.
97SeptanonagesimalSmallest base which is not perfect odd power (where generalized Wagstaff numbers can be factored algebraically) for which no generalized Wagstaff primes are known.
100CentesimalAs 100=102, these are two decimal digits.
120CentevigesimalBase120 encoding.
121CenteunvigesimalRelated to base 11.
125CentepentavigesimalRelated to base 5.
128CenteoctovigesimalUsing as 128=27.
144CentetetraquadragesimalTwo duodecimal digits.
169CentenovemsexagesimalTwo Tridecimal digits.
185CentepentoctogesimalSmallest base which is not perfect power (where generalized repunits can be factored algebraically) for which no generalized repunit primes are known.
196CentehexanonagesimalTwo tetradecimal digits.
200DuocentesimalBase200 encoding.
210DuocentedecimalSmallest base such that all of 1/2 to 1/10 terminate.
216Duocentehexidecimalrelated to base 6.
225DuocentepentavigesimalTwo pentadecimal digits.
256DuocentehexaquinquagesimalBase256 encoding, as 256=28.
300TrecentesimalBase300 encoding.
360TrecentosexagesimalDegrees for angle.

Bijective numeration

BaseNameUsage
1Unary (Bijective base1)Tally marks, Counting
10Bijective base-10To avoid zero
26Bijective base-26Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages.[32]

Signed-digit representation

BaseNameUsage
2Balanced binary (Non-adjacent form)
3Balanced ternaryTernary computers
4Balanced quaternary
5Balanced quinary
6Balanced senary
7Balanced septenary
8Balanced octal
9Balanced nonary
10Balanced decimalJohn Colson
Augustin Cauchy
11Balanced undecimal
12Balanced duodecimal

Negative bases

The common names of the negative base numeral systems are formed using the prefix nega-, giving names such as:

BaseNameUsage
−2Negabinary
−3Negaternary
−4Negaquaternary
−5Negaquinary
−6Negasenary
−8Negaoctal
−10Negadecimal
−12Negaduodecimal
−16Negahexadecimal

Complex bases

BaseNameUsage
2iQuater-imaginary baserelated to base −4 and base 16
Base related to base −2 and base 4
Base related to base 2
Base related to base 8
Base related to base 2
−1 ± iTwindragon baseTwindragon fractal shape, related to base −4 and base 16
1 ± iNega-Twindragon baserelated to base −4 and base 16

Non-integer bases

BaseNameUsage
Base a rational non-integer base
Base related to duodecimal
Base related to decimal
Base related to base 2
Base related to base 3
Base
Base
Base usage in 12-tone equal temperament musical system
Base
Base a negative rational non-integer base
Base a negative non-integer base, related to base 2
Base related to decimal
Base related to duodecimal
φGolden ratio baseEarly Beta encoder[33]
ρPlastic number base
ψSupergolden ratio base
Silver ratio base
eBase Lowest radix economy
πBase
eπBase
Base

n-adic number

BaseNameUsage
2Dyadic number
3Triadic number
4Tetradic numberthe same as dyadic number
5Pentadic number
6Hexadic numbernot a field
7Heptadic number
8Octadic numberthe same as dyadic number
9Enneadic numberthe same as triadic number
10Decadic numbernot a field
11Hendecadic number
12Dodecadic numbernot a field

Mixed radix

  • Factorial number system {1, 2, 3, 4, 5, 6, ...}
  • Even double factorial number system {2, 4, 6, 8, 10, 12, ...}
  • Odd double factorial number system {1, 3, 5, 7, 9, 11, ...}
  • Primorial number system {2, 3, 5, 7, 11, 13, ...}
  • Fibonorial number system {1, 2, 3, 5, 8, 13, ...}
  • {60, 60, 24, 7} in timekeeping
  • {60, 60, 24, 30 (or 31 or 28 or 29), 12, 10, 10, 10} in timekeeping
  • (12, 20) traditional English monetary system (£sd)
  • (20, 18, 13) Maya timekeeping

Other

Non-positional notation

All known numeral systems developed before the Babylonian numerals are non-positional,[34] as are many developed later, such as the Roman numerals. The French Cistercian monks created their own numeral system.

See also

References

  1. Everson, Michael (2007-07-25). "Proposal to add two numbers for the Phoenician script" (PDF). UTC Document Register. L2/07-206 (WG2 N3284): Unicode Consortium.{{cite web}}: CS1 maint: location (link)
  2. Cajori, Florian (Sep 1928). A History Of Mathematical Notations Vol I. The Open Court Company. p. 18. Retrieved 5 June 2017.
  3. Chrisomalis, Stephen (2010-01-18). Numerical Notation: A Comparative History. ISBN 9781139485333.
  4. Chrisomalis, Stephen (2010). Numerical Notation: A Comparative History. Cambridge University Press. p. 200. ISBN 9780521878180.
  5. "Burmese/Myanmar script and pronunciation". Omniglot. Retrieved 5 June 2017.
  6. For the mixed roots of the word "hexadecimal", see Epp, Susanna (2010), Discrete Mathematics with Applications (4th ed.), Cengage Learning, p. 91, ISBN 9781133168669.
  7. http://www.numberbases.com/terms/BaseNames.pdf
  8. The History of Arithmetic, Louis Charles Karpinski, 200pp, Rand McNally & Company, 1925.
  9. Histoire universelle des chiffres, Georges Ifrah, Robert Laffont, 1994.
  10. The Universal History of Numbers: From prehistory to the invention of the computer, Georges Ifrah, ISBN 0-471-39340-1, John Wiley and Sons Inc., New York, 2000. Translated from the French by David Bellos, E.F. Harding, Sophie Wood and Ian Monk
  11. Overmann, Karenleigh A (2020). "The curious idea that Māori once counted by elevens, and the insights it still holds for cross-cultural numerical research". Journal of the Polynesian Society. 129 (1): 59–84. doi:10.15286/jps.129.1.59-84. Retrieved 24 July 2020.
  12. Thomas, N.W (1920). "Duodecimal base of numeration". Man. 20 (1): 56–60. doi:10.2307/2840036. JSTOR 2840036. Retrieved 25 July 2020.
  13. HP 9100A/B programming, HP Museum
  14. Free Patents Online
  15. Laycock, Donald (1975). "Observations on Number Systems and Semantics". In Wurm, Stephen (ed.). New Guinea Area Languages and Language Study, I: Papuan Languages and the New Guinea Linguistic Scene. Pacific Linguistics C-38. Canberra: Research School of Pacific Studies, Australian National University. pp. 219–233.
  16. "Base 26 Cipher (Number ⬌ Words) - Online Decoder, Encoder".
  17. Laycock, Donald (1975). "Observations on Number Systems and Semantics". In Wurm, Stephen (ed.). New Guinea Area Languages and Language Study, I: Papuan Languages and the New Guinea Linguistic Scene. Pacific Linguistics C-38. Canberra: Research School of Pacific Studies, Australian National University. pp. 219–233.
  18. Saxe, Geoffrey B.; Moylan, Thomas (1982). "The development of measurement operations among the Oksapmin of Papua New Guinea". Child Development. 53 (5): 1242–1248. doi:10.1111/j.1467-8624.1982.tb04161.x. JSTOR 1129012..
  19. Grannis, Shaun J.; Overhage, J. Marc; McDonald, Clement J. (2002), "Analysis of identifier performance using a deterministic linkage algorithm", Proceedings. AMIA Symposium: 305–309, PMC 2244404, PMID 12463836.
  20. Stephens, Kenneth Rod (1996), Visual Basic Algorithms: A Developer's Sourcebook of Ready-to-run Code, Wiley, p. 215, ISBN 9780471134183.
  21. Sallows, Lee (1993), "Base 27: the key to a new gematria", Word Ways, 26 (2): 67–77.
  22. "Base52". Retrieved 2016-01-03.
  23. "Base56". Retrieved 2016-01-03.
  24. "Base57". Retrieved 2016-01-03.
  25. "Base57". Retrieved 2019-01-22.
  26. "The Base58 Encoding Scheme". Internet Engineering Task Force. November 27, 2019. Archived from the original on August 12, 2020. Retrieved August 12, 2020. Thanks to Satoshi Nakamoto for inventing the Base58 encoding format
  27. "NewBase60". Retrieved 2016-01-03.
  28. "Base92". Retrieved 2016-01-03.
  29. "Base93". 26 September 2013. Retrieved 2017-02-13.
  30. "Base94". Retrieved 2016-01-03.
  31. "base95 Numeric System". Retrieved 2016-01-03.
  32. Nasar, Sylvia (2001). A Beautiful Mind. Simon and Schuster. pp. 333–6. ISBN 0-7432-2457-4.
  33. Ward, Rachel (2008), "On Robustness Properties of Beta Encoders and Golden Ratio Encoders", IEEE Transactions on Information Theory, 54 (9): 4324–4334, arXiv:0806.1083, Bibcode:2008arXiv0806.1083W, doi:10.1109/TIT.2008.928235, S2CID 12926540
  34. Chrisomalis calls the Babylonian system "the first positional system ever" in Chrisomalis, Stephen (2010), Numerical Notation: A Comparative History, Cambridge University Press, p. 254, ISBN 9781139485333.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.